1
|
Dickinson AJG. Jak2 and Jaw Muscles Are Required for Buccopharyngeal Membrane Perforation during Mouth Development. J Dev Biol 2023; 11:24. [PMID: 37367478 DOI: 10.3390/jdb11020024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
The mouth is a central feature of our face, without which we could not eat, breathe, or communicate. A critical and early event in mouth formation is the creation of a "hole" which connects the digestive system and the external environment. This hole, which has also been called the primary or embryonic mouth in vertebrates, is initially covered by a 1-2 cell layer thick structure called the buccopharyngeal membrane. When the buccopharyngeal membrane does not rupture, it impairs early mouth functions and may also lead to further craniofacial malformations. Using a chemical screen in an animal model (Xenopus laevis) and genetic data from humans, we determined that Janus kinase 2 (Jak2) has a role in buccopharyngeal membrane rupture. We have determined that decreased Jak2 function, using antisense morpholinos or a pharmacological antagonist, caused a persistent buccopharyngeal membrane as well as the loss of jaw muscles. Surprisingly, we observed that the jaw muscle compartments were connected to the oral epithelium that is continuous with the buccopharyngeal membrane. Severing such connections resulted in buccopharyngeal membrane buckling and persistence. We also noted puncta accumulation of F-actin, an indicator of tension, in the buccopharyngeal membrane during perforation. Taken together, the data has led us to a hypothesis that muscles are required to exert tension across the buccopharyngeal membrane, and such tension is necessary for its perforation.
Collapse
Affiliation(s)
- Amanda J G Dickinson
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
2
|
Kumar V, Park S, Lee U, Kim J. The Organizer and Its Signaling in Embryonic Development. J Dev Biol 2021; 9:jdb9040047. [PMID: 34842722 PMCID: PMC8628936 DOI: 10.3390/jdb9040047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Germ layer specification and axis formation are crucial events in embryonic development. The Spemann organizer regulates the early developmental processes by multiple regulatory mechanisms. This review focuses on the responsive signaling in organizer formation and how the organizer orchestrates the germ layer specification in vertebrates. Accumulated evidence indicates that the organizer influences embryonic development by dual signaling. Two parallel processes, the migration of the organizer’s cells, followed by the transcriptional activation/deactivation of target genes, and the diffusion of secreting molecules, collectively direct the early development. Finally, we take an in-depth look at active signaling that originates from the organizer and involves germ layer specification and patterning.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| |
Collapse
|
3
|
Edwards NA, Shacham-Silverberg V, Weitz L, Kingma PS, Shen Y, Wells JM, Chung WK, Zorn AM. Developmental basis of trachea-esophageal birth defects. Dev Biol 2021; 477:85-97. [PMID: 34023332 DOI: 10.1016/j.ydbio.2021.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
Trachea-esophageal defects (TEDs), including esophageal atresia (EA), tracheoesophageal fistula (TEF), and laryngeal-tracheoesophageal clefts (LTEC), are a spectrum of life-threatening congenital anomalies in which the trachea and esophagus do not form properly. Up until recently, the developmental basis of these conditions and how the trachea and esophagus arise from a common fetal foregut was poorly understood. However, with significant advances in human genetics, organoids, and animal models, and integrating single cell genomics with high resolution imaging, we are revealing the molecular and cellular mechanisms that orchestrate tracheoesophageal morphogenesis and how disruption in these processes leads to birth defects. Here we review the current understanding of the genetic and developmental basis of TEDs. We suggest future opportunities for integrating developmental mechanisms elucidated from animals and organoids with human genetics and clinical data to gain insight into the genotype-phenotype basis of these heterogeneous birth defects. Finally, we envision how this will enhance diagnosis, improve treatment, and perhaps one day, lead to new tissue replacement therapy.
Collapse
Affiliation(s)
- Nicole A Edwards
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vered Shacham-Silverberg
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leelah Weitz
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA; Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Paul S Kingma
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA; Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|