1
|
Zook E, Pan YE, Wipplinger A, Kerschbaum HH, Clements RJ, Ritter M, Stauber T, Model MA. Delayed vacuolation in mammalian cells caused by hypotonicity and ion loss. Sci Rep 2024; 14:29354. [PMID: 39592718 PMCID: PMC11599563 DOI: 10.1038/s41598-024-79815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Prolonged exposure of mammalian cells to hypotonic environments stimulates the development of sometimes large and numerous vacuoles of unknown origin. Here, we investigate the nature and formation of these vacuoles, which we term LateVacs. Vacuolation starts after osmotic cell swelling has subsided and continues for many hours thereafter. Most of the vacuoles are positive for the lysosomal marker LAMP-1 but not for the autophagosomal marker LC3. Vacuoles do not appear to have acidic pH, as they exclude LysoTracker and acridine orange; inhibiting the V-ATPase with bafilomycin A1 has no effect on their formation. No LateVacs were formed in cells with a knockout of the essential LRRC8A subunit of the volume-regulated anion channel (VRAC). Since the main feature of cells recovered from hypotonic swelling should be reduced chloride concentration, we tested if chloride depletion can act as a signal for vacuolation. Indeed, four different low-chloride buffers resulted in the development of similar vacuoles. Moreover, vacuolation was suppressed in WNK1/WNK3 double knockouts or by the inhibition of WNK kinase, which is activated by low chloride; in hypotonic media, the WNK inhibitor had a similar effect. However, exposing cells to a low-sodium, high-potassium medium also resulted in vacuoles, which were insensitive to WNK. We conclude that vacuole development can be triggered either by the loss of chloride or by the loss of sodium.
Collapse
Affiliation(s)
- Emily Zook
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Yingzhou Edward Pan
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Anna Wipplinger
- Center for Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Hubert H Kerschbaum
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Robert J Clements
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| | - Michael A Model
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
2
|
Model M, Guo R, Fasina K, Jin R, Clements R, Leff L. Measurement of protein concentration in bacteria and small organelles under a light transmission microscope. J Mol Recognit 2024; 37:e3099. [PMID: 38923720 PMCID: PMC11323175 DOI: 10.1002/jmr.3099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/25/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Protein concentration (PC) is an essential characteristic of cells and organelles; it determines the extent of macromolecular crowding effects and serves as a sensitive indicator of cellular health. A simple and direct way to quantify PC is provided by brightfield-based transport-of-intensity equation (TIE) imaging combined with volume measurements. However, since TIE is based on geometric optics, its applicability to micrometer-sized particles is not clear. Here, we show that TIE can be used on particles with sizes comparable to the wavelength. At the same time, we introduce a new ImageJ plugin that allows TIE image processing without resorting to advanced mathematical programs. To convert TIE data to PC, knowledge of particle volumes is essential. The volumes of bacteria or other isolated particles can be measured by displacement of an external absorbing dye ("transmission-through-dye" or TTD microscopy), and for spherical intracellular particles, volumes can be estimated from their diameters. We illustrate the use of TIE on Escherichia coli, mammalian nucleoli, and nucleolar fibrillar centers. The method is easy to use and achieves high spatial resolution.
Collapse
Affiliation(s)
- M.A Model
- Department of Biological Science, Kent State University, Kent, OH
| | - R Guo
- Department of Computer Science, Kent State University, Kent, OH
| | - K Fasina
- Department of Biological Science, Kent State University, Kent, OH
| | - R Jin
- Department of Computer Science, Kent State University, Kent, OH
| | - R.G. Clements
- Department of Biological Science, Kent State University, Kent, OH
| | - L.G. Leff
- Department of Biological Science, Kent State University, Kent, OH
| |
Collapse
|
3
|
Mouton SN, Boersma AJ, Veenhoff LM. A physicochemical perspective on cellular ageing. Trends Biochem Sci 2023; 48:949-962. [PMID: 37716870 DOI: 10.1016/j.tibs.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023]
Abstract
Cellular ageing described at the molecular level is a multifactorial process that leads to a spectrum of ageing trajectories. There has been recent discussion about whether a decline in physicochemical homeostasis causes aberrant phase transitions, which are a driver of ageing. Indeed, the function of all biological macromolecules, regardless of their participation in biomolecular condensates, depends on parameters such as pH, crowding, and redox state. We expand on the physicochemical homeostasis hypothesis and summarise recent evidence that the intracellular milieu influences molecular processes involved in ageing.
Collapse
Affiliation(s)
- Sara N Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Arnold J Boersma
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Hollembeak JE, Model MA. Stability of Intracellular Protein Concentration under Extreme Osmotic Challenge. Cells 2021; 10:cells10123532. [PMID: 34944039 PMCID: PMC8700764 DOI: 10.3390/cells10123532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Cell volume (CV) regulation is typically studied in short-term experiments to avoid complications resulting from cell growth and division. By combining quantitative phase imaging (by transport-of-intensity equation) with CV measurements (by the exclusion of an external absorbing dye), we were able to monitor the intracellular protein concentration (PC) in HeLa and 3T3 cells for up to 48 h. Long-term PC remained stable in solutions with osmolarities ranging from one-third to almost twice the normal. When cells were subjected to extreme hypoosmolarity (one-quarter of normal), their PC did not decrease as one might expect, but increased; a similar dehydration response was observed at high concentrations of ionophore gramicidin. Highly dilute media, or even moderately dilute in the presence of cytochalasin, caused segregation of water into large protein-free vacuoles, while the surrounding cytoplasm remained at normal density. These results suggest that: (1) dehydration is a standard cellular response to severe stress; (2) the cytoplasm resists prolonged dilution. In an attempt to investigate the mechanism behind the homeostasis of PC, we tested the inhibitors of the protein kinase complex mTOR and the volume-regulated anion channels (VRAC). The initial results did not fully elucidate whether these elements are directly involved in PC maintenance.
Collapse
|
5
|
Studying cell volume beyond cell volume. CURRENT TOPICS IN MEMBRANES 2021; 88:165-188. [PMID: 34862025 DOI: 10.1016/bs.ctm.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The first part of the paper describes two simple microscopic techniques that we use in our laboratory. One measures cell volumes in adherent cultures and the other measures cell dry mass; both measurements are done on the same instrument (a standard bright-field transmission microscope with only one or two narrow-band color filters added) and on the same cells. The reason for combining cell volume with dry mass is that the ratio of the two-dry mass concentration (MC)-is an important and insufficiently utilized biological parameter. We then describe a few applications of MC. The available experimental data strongly suggest its critical role in biological processes, including cell volume regulation. For example, most eukaryotic cells have surprisingly similar values of MC. Moreover, MC (and not cell volume) is tightly controlled in growing cell cultures at highly variable external osmolarities. We review the results showing that elevation of MC is a direct cause of shrinkage-induced apoptosis. Also, by focusing on MC, one can study heterogenous processes, such as necrotic swelling, or discriminate between apoptotic dehydration and the loss of cell fragments.
Collapse
|
6
|
Clements RJ, Davidson M, Model MA. Experimental test of the geometric model of image formation in bright-field microscopy. J Microsc 2021; 283:3-8. [PMID: 33471944 DOI: 10.1111/jmi.13002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 11/29/2022]
Abstract
In the geometric optics approximation, an image formed by an objective lens replicates the distribution of intensity at the front focal plane of the objective. Although this fact represents a fundamental optical principle, its application to analysis of bright-field microscopic images was developed only recently and has not been tested experimentally. In this paper, we applied simple ray tracing to compute an image of a glass cylinder at various positions of the objective and to compare it to the experiment. We obtained a close match between theory and observation, except for a slight underestimation of the intensity in the middle part of the cylinder. The likely reason for this minor difference was constructive interference due to lens-like properties of a cylinder, which could not be accounted for by geometric approximation. We expect that such artefacts would be negligible in imaging of live cells, and the geometric approach would successfully complement the existing quantitative phase methods.
Collapse
Affiliation(s)
- R J Clements
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - M Davidson
- Department of Mathematical Sciences, Kent State University, Kent, Ohio
| | - M A Model
- Department of Biological Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
7
|
Relevance and Regulation of Cell Density. Trends Cell Biol 2020; 30:213-225. [PMID: 31980346 DOI: 10.1016/j.tcb.2019.12.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 01/05/2023]
Abstract
Cell density shows very little variation within a given cell type. For example, in humans variability in cell density among cells of a given cell type is 100 times smaller than variation in cell mass. This tight control indicates that maintenance of a cell type-specific cell density is important for cell function. Indeed, pathological conditions such as cellular senescence are accompanied by changes in cell density. Despite the apparent importance of cell-type-specific density, we know little about how cell density affects cell function, how it is controlled, and how it sometimes changes as part of a developmental process or in response to changes in the environment. The recent development of new technologies to accurately measure the cell density of single cells in suspension and in tissues is likely to provide answers to these important questions.
Collapse
|
8
|
Model MA. Cell Volume Measurements by Optical Transmission Microscopy. ACTA ACUST UNITED AC 2020; 90:e62. [PMID: 31899599 DOI: 10.1002/cpcy.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cell volume is an important parameter in studying cell adaptation to anisosmotic stress, activation of monovalent ion channels, and cell death. This article describes a method for measurement of the volumes of adherent cells using a standard light microscope. A coverslip with attached cells is placed in a shallow chamber in a medium containing a strongly absorbing and cell-impermeant dye, Acid Blue 9. When such a sample is imaged in transmitted light at a wavelength of maximum dye absorption (630 nm), the resulting contrast quantitatively reflects cell thickness; once the thickness is known at every point, the volume can be computed as well. Technical details, interpretation of data, and possible artifacts are discussed. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Michael A Model
- Department of Biological Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
9
|
Zhou DR, Eid R, Miller KA, Boucher E, Mandato CA, Greenwood MT. Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:773-792. [DOI: 10.1016/j.bbamcr.2019.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
10
|
Dmitriev AV, Dmitriev AA, Linsenmeier RA. The logic of ionic homeostasis: Cations are for voltage, but not for volume. PLoS Comput Biol 2019; 15:e1006894. [PMID: 30870418 PMCID: PMC6435201 DOI: 10.1371/journal.pcbi.1006894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/26/2019] [Accepted: 02/19/2019] [Indexed: 01/05/2023] Open
Abstract
Neuronal activity is associated with transmembrane ionic redistribution, which can lead to an osmotic imbalance. Accordingly, activity-dependent changes of the membrane potential are sometimes accompanied by changes in intracellular and/or extracellular volume. Experimental data that include distributions of ions and volume during neuronal activity are rare and rather inconsistent partly due to the technical difficulty of performing such measurements. However, progress in understanding the interrelations among ions, voltage and volume has been achieved recently by computational modelling, particularly “charge-difference” modelling. In this work a charge-difference computational model was used for further understanding of the specific roles for cations and anions. Our simulations show that without anion conductances the transmembrane movements of cations are always osmotically balanced, regardless of the stoichiometry of the pump or the ratio of Na+ and K+ conductances. Yet any changes in cation conductance or pump activity are associated with changes of the membrane potential, even when a hypothetically electroneutral pump is used in calculations and K+ and Na+ conductances are equal. On the other hand, when a Cl- conductance is present, the only way to keep the Cl-equilibrium potential in accordance with the changed membrane potential is to adjust cell volume. Importantly, this voltage-evoked Cl--dependent volume change does not affect intracellular cation concentrations or the amount of energy that is necessary to support the system. Taking other factors into consideration (i.e. the presence of internal impermeant poly-anions, the activity of cation-Cl- cotransporters, and the buildup of intra- and extracellular osmolytes, both charged and electroneutral) adds complexity, but does not change the main principles. We have developed software that calculates membrane potential and cell volume that result from redistribution of principal ions (K+, Na+, and Cl-) during normal cellular activity and experimental manipulations. Calculations in the model are done by an iterative charge-difference method that makes few assumptions about governing equations. Most of the features that were considered to be important for volume and voltage regulation were incorporated in the model, including the unique capability to perform calculations with different values of transmembrane water permeability. We have used the program to reexamine interactions between ionic fluxes, membrane potential, and cell volume and found that there was a previously unappreciated difference in the way that the distribution of cations and anions affect the cell. Na+ and K+, which are distributed unevenly across the membrane by the Na+/K+-ATPase, are primarily responsible for the membrane potential, but, contrary to popular belief, do not directly participate in volume regulation. On the other hand, the Cl- conductance determines the extent of volume changes, because Cl- has to follow the changes of membrane potential, which inevitably leads to changes in cell volume. The software is available to download and use for other investigations.
Collapse
Affiliation(s)
- Andrey V. Dmitriev
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, United States of America
| | | | - Robert A. Linsenmeier
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, United States of America
- Neurobiology Department, Northwestern University, Evanston, Illinois, United States of America
- Ophthalmology Department, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
11
|
Marakhova I, Domnina A, Shatrova A, Borodkina A, Burova E, Pugovkina N, Zemelko V, Nikolsky N. Proliferation-related changes in K + content in human mesenchymal stem cells. Sci Rep 2019; 9:346. [PMID: 30674973 PMCID: PMC6344592 DOI: 10.1038/s41598-018-36922-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022] Open
Abstract
Intracellular monovalent ions have been shown to be important for cell proliferation, however, mechanisms through which ions regulate cell proliferation is not well understood. Ion transporters may be implicated in the intracellular signaling: Na+ and Cl− participate in regulation of intracellular pH, transmembrane potential, Ca2+ homeostasis. Recently, it is has been suggested that K+ may be involved in “the pluripotency signaling network”. Our study has been focused on the relations between K+ transport and stem cell proliferation. We compared monovalent cation transport in human mesenchymal stem cells (hMSCs) at different passages and at low and high densities of culture as well as during stress-induced cell cycle arrest and revealed a decline in K+ content per cell protein which was associated with accumulation of G1 cells in population and accompanied cell proliferation slowing. It is suggested that cell K+ may be important for successful cell proliferation as the main intracellular ion that participates in regulation of cell volume during cell cycle progression. It is proposed that cell K+ content as related to cell protein is a physiological marker of stem cell proliferation and may be used as an informative test for assessing the functional status of stem cells in vitro.
Collapse
Affiliation(s)
- Irina Marakhova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Academy of Sciences, St-Petersburg, 194064, Russian Federation.
| | - Alisa Domnina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Academy of Sciences, St-Petersburg, 194064, Russian Federation
| | - Alla Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Academy of Sciences, St-Petersburg, 194064, Russian Federation
| | - Aleksandra Borodkina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Academy of Sciences, St-Petersburg, 194064, Russian Federation
| | - Elena Burova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Academy of Sciences, St-Petersburg, 194064, Russian Federation
| | - Natalja Pugovkina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Academy of Sciences, St-Petersburg, 194064, Russian Federation
| | - Victoria Zemelko
- Department of Intracellular Signaling and Transport, Institute of Cytology, Academy of Sciences, St-Petersburg, 194064, Russian Federation
| | - Nikolay Nikolsky
- Department of Intracellular Signaling and Transport, Institute of Cytology, Academy of Sciences, St-Petersburg, 194064, Russian Federation
| |
Collapse
|