1
|
Wang M, Yi G, Zhang Y, Li M, Zhang J. Quantitative prediction of postpartum hemorrhage in cesarean section on machine learning. BMC Med Inform Decis Mak 2024; 24:166. [PMID: 38872184 DOI: 10.1186/s12911-024-02571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Cesarean section-induced postpartum hemorrhage (PPH) potentially causes anemia and hypovolemic shock in pregnant women. Hence, it is helpful for obstetricians and anesthesiologists to prepare pre-emptive prevention when predicting PPH occurrence in advance. However, current works on PPH prediction focus on whether PPH occurs rather than assessing PPH amount. To this end, this work studies quantitative PPH prediction with machine learning (ML). METHODS The study cohort in this paper was selected from individuals with PPH who were hospitalized at Shijiazhuang Obstetrics and Gynecology Hospital from 2020 to 2022. In this study cohort, we built a dataset with 6,144 subjects covering clinical parameters, anesthesia operation records, laboratory examination results, and other information in the electronic medical record system. Based on our built dataset, we exploit six different ML models, including logistic regression, linear regression, gradient boosting, XGBoost, multilayer perceptron, and random forest, to automatically predict the amount of bleeding during cesarean section. Eighty percent of the dataset was used as model training, and 20 % was used for verification. Those ML models are constantly verified and improved by root mean squared error(RMSE) and mean absolute error(MAE). Moreover, we also leverage the importance of permutation and partial dependence plot (PDP) to discuss their feasibility. RESULT The experiment results show that random forest obtains the highest accuracy for PPH amount prediction compared to other ML methods. Random forest reaches the mean absolute error of 21.7, less than 5.4 % prediction error. It also gains the root mean squared error of 33.75, less than 9.3 % prediction error. On the other hand, the experimental results also disclose indicators that contributed most to PPH prediction, including Ca, hemoglobin, white blood cells, platelets, Na, and K. CONCLUSION It effectively predicts the amount of PPH during a cesarean section by ML methods, especially random forest. With the above insight, ML predicting PPH amounts provides early warning for clinicians, thus reducing complications and improving cesarean sections' safety. Furthermore, the importance of ML and permutation, complemented by incorporating PDP, promises to provide clinicians with a transparent indication of individual risk prediction.
Collapse
Affiliation(s)
- Meng Wang
- School of Information Engineering, China University of Geosciences, Beijing, 100083, China
- Tangshan Polytechnic College, Tangshan, 063299, China
| | - Gao Yi
- Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, 050000, China
| | - Yunjia Zhang
- School of Information Engineering, China University of Geosciences, Beijing, 100083, China
| | - Mei Li
- School of Information Engineering, China University of Geosciences, Beijing, 100083, China.
| | - Jin Zhang
- Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, 050000, China.
| |
Collapse
|
2
|
Charles JA, Habibullah NK, Bautista S, Davis B, Joshi S, Hull SC. Planting the Seed for Blood Pressure Control: The Role of Plant-Based Nutrition in the Management of Hypertension. Curr Cardiol Rep 2024; 26:121-134. [PMID: 38526748 PMCID: PMC10990999 DOI: 10.1007/s11886-023-02008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW Hypertension results in significant morbidity, mortality, and healthcare expenditures. Fortunately, it is largely preventable and treatable by implementing dietary interventions, though these remain underutilized. Here, we aim to explore the role of healthy dietary patterns in hypertension management and describe approaches for busy clinicians to address nutrition effectively and efficiently with patients. RECENT FINDINGS DASH, Mediterranean, vegetarian, and vegan diets that include minimally processed, plant-based foods as core elements have consistently shown positive effects on hypertension. Recommendations that distill the most healthful components of these diets can significantly impact patient outcomes. Clinicians can harness evidence-based dietary assessment and counseling tools to implement and support behavioral changes, even during brief office visits. Healthful plant-based dietary patterns can often effectively prevent and treat hypertension. Clinicians may help improve patient outcomes by discussing evidence-based nutrition with their patients. Future work to promote infrastructural change that supports incorporating evidence-based nutrition into medical education, clinical care, and society at large can support these efforts.
Collapse
Affiliation(s)
- Justin A Charles
- Department of Family Medicine and Public Health, UC San Diego Health, San Diego, CA, USA.
| | | | - Saul Bautista
- Ethos Farm to Health/Ethos Primary Care, Long Valley, NJ, USA
| | - Brenda Davis
- Brenda Davis, Nutrition Consultations, Calgary, AB, Canada
| | - Shivam Joshi
- Department of Veterans Affairs, Orlando, FL, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Sarah C Hull
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
- Program for Biomedical Ethics, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Bahena-Lopez JP, Vergara L, de la-Peña V, Gutierrez-Gallardo MA, López-Ibargüen P, García JA, Contreras-Carbajal H, Vázquez N, Rincón-Heredia R, Masso F, Bobadilla NA, Castañeda-Bueno M, Ellison DH, Gamba G, Chávez-Canales M. KS-WNK1 is required for the renal response to extreme changes in potassium intake. Am J Physiol Renal Physiol 2024; 326:F460-F476. [PMID: 38269409 PMCID: PMC11207588 DOI: 10.1152/ajprenal.00235.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Kidney-specific with-no-lysine kinase 1 (KS-WNK1) is an isoform of WNK1 kinase that is predominantly found in the distal convoluted tubule of the kidney. The precise physiological function of KS-WNK1 remains unclear. Some studies have suggested that it could play a role in regulating potassium renal excretion by modulating the activity of the Na+-Cl- cotransporter (NCC). However, changes in the potassium diet from normal to high failed to reveal a role for KS-WNK1, but under a normal-potassium diet, the expression of KS-WNK1 is negligible. It is only detectable when mice are exposed to a low-potassium diet. In this study, we investigated the role of KS-WNK1 in regulating potassium excretion under extreme changes in potassium intake. After following a zero-potassium diet (0KD) for 10 days, KS-WNK1-/- mice had lower plasma levels of K+ and Cl- while exhibiting higher urinary excretion of Na+, Cl-, and K+ compared with KS-WNK1+/+ mice. After 10 days of 0KD or normal-potassium diet (NKD), all mice were challenged with a high-potassium diet (HKD). Plasma K+ levels markedly increased after the HKD challenge only in mice previously fed with 0KD, regardless of genotype. KSWNK1+/+ mice adapt better to HKD challenge than KS-WNK1-/- mice after a potassium-retaining state. The difference in the phosphorylated NCC-to-NCC ratio between KS-WNK1+/+ and KS-WNK1-/- mice after 0KD and HKD indicates a role for KS-WNK1 in both NCC phosphorylation and dephosphorylation. These observations show that KS-WNK1 helps the distal convoluted tubule to respond to extreme changes in potassium intake, such as those occurring in wildlife.NEW & NOTEWORTHY The findings of this study demonstrate that kidney-specific with-no-lysine kinase 1 plays a role in regulating urinary electrolyte excretion during extreme changes in potassium intake, such as those occurring in wildlife. .
Collapse
Affiliation(s)
- Jessica Paola Bahena-Lopez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- MD/PhD program (Programa de Estudios Combinados en Medicina), Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Vergara
- Unidad de Investigación UNAM-INCICH, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Valeria de la-Peña
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Unidad de Investigación UNAM-INCICH, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel A Gutierrez-Gallardo
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- MD/PhD program (Programa de Estudios Combinados en Medicina), Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paulina López-Ibargüen
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Janeth Alejandra García
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Héctor Contreras-Carbajal
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma Vázquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Felipe Masso
- Unidad de Investigación UNAM-INCICH, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Norma A Bobadilla
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- MD/PhD program (Programa de Estudios Combinados en Medicina), Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INCICH, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Murillo-de-Ozores AR, Carbajal-Contreras H, Magaña-Ávila GR, Valdés R, Grajeda-Medina LI, Vázquez N, Zariñán T, López-Saavedra A, Sharma A, Lin DH, Wang WH, Delpire E, Ellison DH, Gamba G, Castañeda-Bueno M. Multiple molecular mechanisms are involved in the activation of the kidney sodium-chloride cotransporter by hypokalemia. Kidney Int 2022; 102:1030-1041. [PMID: 35870644 PMCID: PMC10411384 DOI: 10.1016/j.kint.2022.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
Low potassium intake activates the kidney sodium-chloride cotransporter (NCC) whose phosphorylation and activity depend on the With-No-Lysine kinase 4 (WNK4) that is inhibited by chloride binding to its kinase domain. Low extracellular potassium activates NCC by decreasing intracellular chloride thereby promoting chloride dissociation from WNK4 where residue L319 of WNK4 participates in chloride coordination. Since the WNK4-L319F mutant is constitutively active and chloride-insensitive in vitro, we generated mice harboring this mutation that displayed slightly increased phosphorylated NCC and mild hyperkalemia when on a 129/sv genetic background. On a low potassium diet, upregulation of phosphorylated NCC was observed, suggesting that in addition to chloride sensing by WNK4, other mechanisms participate which may include modulation of WNK4 activity and degradation by phosphorylation of the RRxS motif in regulatory domains present in WNK4 and KLHL3, respectively. Increased levels of WNK4 and kidney-specific WNK1 and phospho-WNK4-RRxS were observed in wild-type and WNK4L319F/L319F mice on a low potassium diet. Decreased extracellular potassium promoted WNK4-RRxS phosphorylation in vitro and ex vivo as well. These effects might be secondary to intracellular chloride depletion, as reduction of intracellular chloride in HEK293 cells increased phospho-WNK4-RRxS. Phospho-WNK4-RRxS levels were increased in mice lacking the Kir5.1 potassium channel, which presumably have decreased distal convoluted tubule intracellular chloride. Similarly, phospho-KLHL3 was modulated by changes in intracellular chloride in HEK293 cells. Thus, our data suggest that multiple chloride-regulated mechanisms are responsible for NCC upregulation by low extracellular potassium.
Collapse
Affiliation(s)
- Adrián R Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City; Faculty of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City
| | - Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City; PECEM, Faculty of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | - Germán R Magaña-Ávila
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City; Faculty of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City
| | - Raquel Valdés
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City; Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City
| | - Leoneli I Grajeda-Medina
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City
| | - Norma Vázquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM), Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Alejandro López-Saavedra
- Unidad de Aplicaciones Avanzadas en Microscopía del Instituto Nacional de Cancerología y la Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Avika Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA; Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Renal Section, VA Portland Health Care System, Portland, Oregon, USA
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City; PECEM, Faculty of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico; Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City.
| |
Collapse
|
5
|
Xiao H, Yan Y, Gu Y, Zhang Y. Strategy for sodium-salt substitution: On the relationship between hypertension and dietary intake of cations. Food Res Int 2022; 156:110822. [PMID: 35650987 DOI: 10.1016/j.foodres.2021.110822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/04/2022]
Abstract
Chronic diseases, especially cardiovascular diseases (CVD), have become one of the main causes affecting human health. Hypertension is a prominent representative of CVD. The formation and development of hypertension is closely related to people's daily diet. A large number of studies have shown that excessive intake of salt (NaCl) could increase the risk of hypertension. In recent years, more and more investigations have focused on other cations that may be contained in edible salt, exploring whether they have an effect on hypertension and the underlying mechanism. This article focuses on the relationship between four metal elements (potassium, calcium, magnesium, and zinc) and hypertension, by discussing the main metabolic pathway, the impact of diet intake on blood pressure, and especially the regulation mechanisms on blood pressure in detail. At the same time, some opinions and suggestions are put forward, combined with the current hot topics "salt reduction" and "salt substitution".
Collapse
Affiliation(s)
- Hongrui Xiao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yali Yan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yanpei Gu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ying Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
6
|
Hunter RW, Dhaun N, Bailey MA. The impact of excessive salt intake on human health. Nat Rev Nephrol 2022; 18:321-335. [DOI: 10.1038/s41581-021-00533-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/19/2022]
|
7
|
Murillo-de-Ozores AR, Rodríguez-Gama A, Carbajal-Contreras H, Gamba G, Castañeda-Bueno M. WNK4 kinase: from structure to physiology. Am J Physiol Renal Physiol 2021; 320:F378-F403. [PMID: 33491560 DOI: 10.1152/ajprenal.00634.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With no lysine kinase-4 (WNK4) belongs to a serine-threonine kinase family characterized by the atypical positioning of its catalytic lysine. Despite the fact that WNK4 has been found in many tissues, the majority of its study has revolved around its function in the kidney, specifically as a positive regulator of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule of the nephron. This is explained by the description of gain-of-function mutations in the gene encoding WNK4 that causes familial hyperkalemic hypertension. This disease is mainly driven by increased downstream activation of the Ste20/SPS1-related proline-alanine-rich kinase/oxidative stress responsive kinase-1-NCC pathway, which increases salt reabsorption in the distal convoluted tubule and indirectly impairs renal K+ secretion. Here, we review the large volume of information that has accumulated about different aspects of WNK4 function. We first review the knowledge on WNK4 structure and enumerate the functional domains and motifs that have been characterized. Then, we discuss WNK4 physiological functions based on the information obtained from in vitro studies and from a diverse set of genetically modified mouse models with altered WNK4 function. We then review in vitro and in vivo evidence on the different levels of regulation of WNK4. Finally, we go through the evidence that has suggested how different physiological conditions act through WNK4 to modulate NCC activity.
Collapse
Affiliation(s)
- Adrián Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | | | - Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| |
Collapse
|
8
|
Murillo-de-Ozores AR, Chávez-Canales M, de los Heros P, Gamba G, Castañeda-Bueno M. Physiological Processes Modulated by the Chloride-Sensitive WNK-SPAK/OSR1 Kinase Signaling Pathway and the Cation-Coupled Chloride Cotransporters. Front Physiol 2020; 11:585907. [PMID: 33192599 PMCID: PMC7606576 DOI: 10.3389/fphys.2020.585907] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
The role of Cl- as an intracellular signaling ion has been increasingly recognized in recent years. One of the currently best described roles of Cl- in signaling is the modulation of the With-No-Lysine (K) (WNK) - STE20-Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1) - Cation-Coupled Cl- Cotransporters (CCCs) cascade. Binding of a Cl- anion to the active site of WNK kinases directly modulates their activity, promoting their inhibition. WNK activation due to Cl- release from the binding site leads to phosphorylation and activation of SPAK/OSR1, which in turn phosphorylate the CCCs. Phosphorylation by WNKs-SPAK/OSR1 of the Na+-driven CCCs (mediating ions influx) promote their activation, whereas that of the K+-driven CCCs (mediating ions efflux) promote their inhibition. This results in net Cl- influx and feedback inhibition of WNK kinases. A wide variety of alterations to this pathway have been recognized as the cause of several human diseases, with manifestations in different systems. The understanding of WNK kinases as Cl- sensitive proteins has allowed us to better understand the mechanistic details of regulatory processes involved in diverse physiological phenomena that are reviewed here. These include cell volume regulation, potassium sensing and intracellular signaling in the renal distal convoluted tubule, and regulation of the neuronal response to the neurotransmitter GABA.
Collapse
Affiliation(s)
- Adrián Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de los Heros
- Unidad de Investigación UNAM-INC, Research Division, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
9
|
Associations between metabolic syndrome and urinary Na-to-K ratio and glomerular filtration rate in middle-aged adults regardless of Na and K intakes. Clin Exp Nephrol 2020; 24:1015-1024. [PMID: 32700113 DOI: 10.1007/s10157-020-01933-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Intake of Na-to-K ratio (I-Na/K), urinary Na-to-K ratio (U-Na/K), and estimated glomerular filtration rate (GFR) have been reported to be risk factors of metabolic syndrome (MetS), but results are inconsistent. We examined the hypothesis that U-Na/K, GFR, and a preference for salty foods are associated with MetS risk and the hypothesis in 8540 adults aged over 40 years without chronic kidney disease. METHODS Participants were categorized using a U-Na/K of < 2.1 (low-U-Na/k) and a GFR of < 60 mL/min (low-GFR). A GFR of 60-90 mL/min was considered as a normal level, since it is a normal or marginal disease state. Correlations and associations were determined using Pearson's correlation coefficients and logistic regression analysis after adjusting for covariates related to MetS. RESULTS U-Na/K, but not I-Na/K, was positively correlated with blood pressure (r2 = 0.20, P < 0.0001). The GFR was negatively correlated with age, gender, HOMA-B, and MetS (r2 = - 0.14 to - 0.595, P < 0.0001), and positively correlated with education, current smoking, and alcohol intake (r2 = 0.21 to 0.40, P < 0.0001). MetS risk had a positive association with the following combinations with low-U-Na/K + low-GFR, high-U-Na/K + high-GFR, and high-U-Na/K +low-GFR by 1.830-, 3.182-, and 3.696-fold, respectively, as compared with low-U-Na/K + high-GFR. Risks of the MetS components (abdominal obesity, hypertriglyceridemia, hypo-HDL-cholesterolemia, hypertension, and hyperglycemia) were similarly associated with U-Na/K and GFR, though hypertension had the strongest association. Hypertension risk had positive associations with low-U-Na/K + low-GFR, high-U-Na/K + high-GFR, and high-U-Na/K + low-GFR by 1.526-, 14.06-, and 7.079-fold, respectively, as compared with low-U-Na/K + high-GFR. CONCLUSION MetS risk was found to be associated with U-Na/K and GFR regardless of I-Na/K. Women need to maintain a high GFR to reduce the MetS risk, especially the risk of hypertension.
Collapse
|
10
|
Joshi S, Ettinger L, Liebman SE. Plant-Based Diets and Hypertension. Am J Lifestyle Med 2020; 14:397-405. [PMID: 33281520 PMCID: PMC7692016 DOI: 10.1177/1559827619875411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/28/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Hypertension is a global epidemic and a risk factor for many adverse outcomes, including cardiovascular disease, kidney disease, and death. Lifestyle plays a significant role in the development and maintenance of hypertension, and guidelines from several organizations recommend lifestyle modifications as first-line intervention for hypertensive patients. Data supporting the use of plant-based diets in the treatment of hypertension goes back almost a century. More recently, clinical trial data, including randomized controlled trials, have established plant-based diets as an effective lifestyle intervention for high blood pressure (BP). Plant-based diets differ from the standard American diet in a myriad of ways, with some substances being present in either substantially higher or lower amounts. Although the precise mechanism of a plant-based diet's beneficial effects on BP is unknown, many of these differences may be responsible. Attributes of a plant-based diet that may lower BP include a lower energy content leading to weight loss, a lower sodium content, an increased potassium content, reduced oxidative stress, higher bioavailability of the vasodilator nitric oxide, and beneficial effects on the microbiome. The evidenced-based benefits of plant-based diets in treating hypertension should lead providers to advocate for this dietary pattern for their patients.
Collapse
Affiliation(s)
- Shivam Joshi
- Shivam Joshi, MD, Division of
General Internal Medicine, Department of Medicine, New York University
School of Medicine, 550 First Avenue, New York, NY 10016; e-mail:
| | - Leigh Ettinger
- Division of General Internal Medicine,
Department of Medicine, New York University School of Medicine, New
York (SJ)
- Department of Pediatrics at Seton
Hall-Hackensack Meridian School of Medicine, Nutley, New Jersey
(LE)
- Department of Internal Medicine, Division of
Nephrology, University of Rochester School of Medicine, Rochester, New
York (SEL)
| | - Scott E. Liebman
- Division of General Internal Medicine,
Department of Medicine, New York University School of Medicine, New
York (SJ)
- Department of Pediatrics at Seton
Hall-Hackensack Meridian School of Medicine, Nutley, New Jersey
(LE)
- Department of Internal Medicine, Division of
Nephrology, University of Rochester School of Medicine, Rochester, New
York (SEL)
| |
Collapse
|