1
|
Shaw AE, Mihelich MN, Whitted JE, Reitman HJ, Timmerman AJ, Tehseen M, Hamdan SM, Schauer GD. Revised mechanism of hydroxyurea-induced cell cycle arrest and an improved alternative. Proc Natl Acad Sci U S A 2024; 121:e2404470121. [PMID: 39374399 PMCID: PMC11494364 DOI: 10.1073/pnas.2404470121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Replication stress describes endogenous and exogenous challenges to DNA replication in the S-phase. Stress during this critical process causes helicase-polymerase decoupling at replication forks, triggering the S-phase checkpoint, which orchestrates global replication fork stalling and delayed entry into G2. The replication stressor most often used to induce the checkpoint response in yeast is hydroxyurea (HU), a clinically used chemotherapeutic. The primary mechanism of S-phase checkpoint activation by HU has thus far been considered to be a reduction of deoxynucleotide triphosphate synthesis by inhibition of ribonucleotide reductase (RNR), leading to helicase-polymerase decoupling and subsequent activation of the checkpoint, facilitated by the replisome-associated mediator Mrc1. In contrast, we observe that HU causes cell cycle arrest in budding yeast independent of both the Mrc1-mediated replication checkpoint response and the Psk1-Mrc1 oxidative signaling pathway. We demonstrate a direct relationship between HU incubation and reactive oxygen species (ROS) production in yeast and human cells and show that antioxidants restore growth of yeast in HU. We further observe that ROS strongly inhibits the in vitro polymerase activity of replicative polymerases (Pols), Pol α, Pol δ, and Pol ε, causing polymerase complex dissociation and subsequent loss of DNA substrate binding, likely through oxidation of their integral iron-sulfur (Fe-S) clusters. Finally, we present "RNR-deg," a genetically engineered alternative to HU in yeast with greatly increased specificity of RNR inhibition, allowing researchers to achieve fast, nontoxic, and more readily reversible checkpoint activation compared to HU, avoiding harmful ROS generation and associated downstream cellular effects that may confound interpretation of results.
Collapse
Affiliation(s)
- Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Mattias N. Mihelich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Jackson E. Whitted
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Hannah J. Reitman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Adam J. Timmerman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Muhammad Tehseen
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Samir M. Hamdan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Grant D. Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| |
Collapse
|
2
|
Welikala MU, Butterworth LJ, Behrmann MS, Trakselis MA. Tau-mediated coupling between Pol III synthesis and DnaB helicase unwinding helps maintain genomic stability. J Biol Chem 2024; 300:107726. [PMID: 39214305 PMCID: PMC11470591 DOI: 10.1016/j.jbc.2024.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The τ-subunit of the clamp loader complex physically interacts with both the DnaB helicase and the polymerase III (Pol III) core α-subunit through domains IV and V, respectively. This interaction is proposed to help maintain rapid and efficient DNA synthesis rates with high genomic fidelity and plasticity, facilitating enzymatic coupling within the replisome. To test this hypothesis, CRISPR-Cas9 editing was used to create site-directed genomic mutations within the dnaX gene at the C terminus of τ predicted to interact with the α-subunit of Pol III. Perturbation of the α-τ binding interaction in vivo resulted in cellular and genomic stress markers that included reduced growth rates, fitness, and viabilities. Specifically, dnaX:mut strains showed increased cell filamentation, mutagenesis frequencies, and activated SOS. In situ fluorescence flow cytometry and microscopy quantified large increases in the amount of ssDNA gaps present. Removal of the C terminus of τ (I618X) still maintained its interactions with DnaB and stimulated unwinding but lost its interaction with Pol III, resulting in significantly reduced rolling circle DNA synthesis. Intriguingly, dnaX:L635P/D636G had the largest induction of SOS, high mutagenesis, and the most prominent ssDNA gaps, which can be explained by an impaired ability to regulate the unwinding speed of DnaB resulting in a faster rate of in vitro rolling circle DNA replication, inducing replisome decoupling. Therefore, τ-stimulated DnaB unwinding and physical coupling with Pol III acts to enforce replisome plasticity to maintain an efficient rate of synthesis and prevent genomic instability.
Collapse
Affiliation(s)
- Malisha U Welikala
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | | | - Megan S Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA.
| |
Collapse
|
3
|
Behrmann M, Perera H, Welikala M, Matthews J, Butterworth L, Trakselis M. Dysregulated DnaB unwinding induces replisome decoupling and daughter strand gaps that are countered by RecA polymerization. Nucleic Acids Res 2024; 52:6977-6993. [PMID: 38808668 PMCID: PMC11229327 DOI: 10.1093/nar/gkae435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
The replicative helicase, DnaB, is a central component of the replisome and unwinds duplex DNA coupled with immediate template-dependent DNA synthesis by the polymerase, Pol III. The rate of helicase unwinding is dynamically regulated through structural transitions in the DnaB hexamer between dilated and constricted states. Site-specific mutations in DnaB enforce a faster more constricted conformation that dysregulates unwinding dynamics, causing replisome decoupling that generates excess ssDNA and induces severe cellular stress. This surplus ssDNA can stimulate RecA recruitment to initiate recombinational repair, restart, or activation of the transcriptional SOS response. To better understand the consequences of dysregulated unwinding, we combined targeted genomic dnaB mutations with an inducible RecA filament inhibition strategy to examine the dependencies on RecA in mitigating replisome decoupling phenotypes. Without RecA filamentation, dnaB:mut strains had reduced growth rates, decreased mutagenesis, but a greater burden from endogenous damage. Interestingly, disruption of RecA filamentation in these dnaB:mut strains also reduced cellular filamentation but increased markers of double strand breaks and ssDNA gaps as detected by in situ fluorescence microscopy and FACS assays, TUNEL and PLUG, respectively. Overall, RecA plays a critical role in strain survival by protecting and processing ssDNA gaps caused by dysregulated helicase activity in vivo.
Collapse
Affiliation(s)
- Megan S Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| | - Himasha M Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| | - Malisha U Welikala
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| | - Jacquelynn E Matthews
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| | - Lauren J Butterworth
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| |
Collapse
|
4
|
Shaw AE, Whitted JE, Mihelich MN, Reitman HJ, Timmerman AJ, Schauer GD. Revised Mechanism of Hydroxyurea Induced Cell Cycle Arrest and an Improved Alternative. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583010. [PMID: 38496404 PMCID: PMC10942336 DOI: 10.1101/2024.03.02.583010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Replication stress describes various types of endogenous and exogenous challenges to DNA replication in S-phase. Stress during this critical process results in helicase-polymerase decoupling at replication forks, triggering the S-phase checkpoint, which orchestrates global replication fork stalling and delayed entry into G2. The replication stressor most often used to induce the checkpoint response is hydroxyurea (HU), a chemotherapeutic agent. The primary mechanism of S-phase checkpoint activation by HU has thus far been considered to be a reduction of dNTP synthesis by inhibition of ribonucleotide reductase (RNR), leading to helicase-polymerase decoupling and subsequent activation of the checkpoint, mediated by the replisome associated effector kinase Mrc1. In contrast, we observe that HU causes cell cycle arrest in budding yeast independent of both the Mrc1-mediated replication checkpoint response and the Psk1-Mrc1 oxidative signaling pathway. We demonstrate a direct relationship between HU incubation and reactive oxygen species (ROS) production in yeast nuclei. We further observe that ROS strongly inhibits the in vitro polymerase activity of replicative polymerases (Pols), Pol α, Pol δ, and Pol ε, causing polymerase complex dissociation and subsequent loss of DNA substrate binding, likely through oxidation of their integral iron sulfur Fe-S clusters. Finally, we present "RNR-deg," a genetically engineered alternative to HU in yeast with greatly increased specificity of RNR inhibition, allowing researchers to achieve fast, nontoxic, and more readily reversible checkpoint activation compared to HU, avoiding harmful ROS generation and associated downstream cellular effects that may confound interpretation of results.
Collapse
Affiliation(s)
- Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Jackson E. Whitted
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Mattias N. Mihelich
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Hannah J. Reitman
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Adam J. Timmerman
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Grant D. Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| |
Collapse
|
5
|
Lewis JS, van Oijen AM, Spenkelink LM. Embracing Heterogeneity: Challenging the Paradigm of Replisomes as Deterministic Machines. Chem Rev 2023; 123:13419-13440. [PMID: 37971892 PMCID: PMC10790245 DOI: 10.1021/acs.chemrev.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.
Collapse
Affiliation(s)
- Jacob S. Lewis
- Macromolecular
Machines Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Antoine M. van Oijen
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lisanne M. Spenkelink
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
6
|
Islam F, Purkait D, Mishra PP. Insights into the Dynamics and Helicase Activity of RecD2 of Deinococcus radiodurans during DNA Repair: A Single-Molecule Perspective. J Phys Chem B 2023; 127:4351-4363. [PMID: 37163679 DOI: 10.1021/acs.jpcb.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
While the double helix is the most stable conformation of DNA inside cells, its transient unwinding and subsequent partial separation of the two complementary strands yields an intermediate single-stranded DNA (ssDNA). The ssDNA is involved in all major DNA transactions such as replication, transcription, recombination, and repair. The process of DNA unwinding and translocation is shouldered by helicases that transduce the chemical energy derived from nucleotide triphosphate (NTP) hydrolysis to mechanical energy and utilize it to destabilize hydrogen bonds between complementary base pairs. Consequently, a comprehensive understanding of the molecular mechanisms of these enzymes is essential. In the last few decades, a combination of single-molecule techniques (force-based manipulation and visualization) have been employed to study helicase action. These approaches have allowed researchers to study the single helicase-DNA complex in real-time and the free energy landscape of their interaction together with the detection of conformational intermediates and molecular heterogeneity during the course of helicase action. Furthermore, the unique ability of these techniques to resolve helicase motion at nanometer and millisecond spatial and temporal resolutions, respectively, provided surprising insights into their mechanism of action. This perspective outlines the contribution of single-molecule methods in deciphering molecular details of helicase activities. It also exemplifies how each technique was or can be used to study the helicase action of RecD2 in recombination DNA repair.
Collapse
Affiliation(s)
- Farhana Islam
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Debayan Purkait
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Padmaja Prasad Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
7
|
Shaw AE, Kairamkonda S, Ghodke H, Schauer GD. Biochemical and single-molecule techniques to study accessory helicase resolution of R-loop proteins at stalled replication forks. Methods Enzymol 2022; 673:191-225. [PMID: 35965008 DOI: 10.1016/bs.mie.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
R-loop proteins present a stable and robust blockade to the progression of a DNA replication fork during S-phase. The consequences of this block can include mutagenesis and other irreversible chromosomal catastrophes, causing genomic instability and disease. As such, further investigation into the molecular mechanisms underlying R-loop protein resolution is warranted. The critical role of non-replicative accessory helicases in R-loop protein resolution has increasingly come into light in recent years. Such helicases include the Pif1-family, monomeric helicases that have been studied in many different contexts and that have been ascribed to a multitude of separable protective functions in the cell. In this chapter, we present protocols to study R-loop protein resolution by Pif1 helicase at stalled replication forks using purified proteins, both at the biochemical and single-molecule level. Our system uses recombinant proteins expressed in Saccharomyces cerevisiae but could apply to practically any organism of interest due to the high interspecies homology of the proteins involved in DNA replication. The methods we outline are extensible to many systems and should be applicable to studying R-loop clearance by any Superfamily (SF) 1B helicase. These techniques will further enable mechanistic research on these critical but understudied components of the genomic maintenance program.
Collapse
Affiliation(s)
- Alisa E Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Sreeya Kairamkonda
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW, Australia
| | - Grant D Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
8
|
Qiao C, Debiasi-Anders G, Mir-Sanchis I. Staphylococcal self-loading helicases couple the staircase mechanism with inter domain high flexibility. Nucleic Acids Res 2022; 50:8349-8362. [PMID: 35871290 PMCID: PMC9371898 DOI: 10.1093/nar/gkac625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Replication is a crucial cellular process. Replicative helicases unwind DNA providing the template strand to the polymerase and promoting replication fork progression. Helicases are multi-domain proteins which use an ATPase domain to couple ATP hydrolysis with translocation, however the role that the other domains might have during translocation remains elusive. Here, we studied the unexplored self-loading helicases called Reps, present in Staphylococcus aureus pathogenicity islands (SaPIs). Our cryoEM structures of the PriRep5 from SaPI5 (3.3 Å), the Rep1 from SaPI1 (3.9 Å) and Rep1–DNA complex (3.1Å) showed that in both Reps, the C-terminal domain (CTD) undergoes two distinct movements respect the ATPase domain. We experimentally demonstrate both in vitro and in vivo that SaPI-encoded Reps need key amino acids involved in the staircase mechanism of translocation. Additionally, we demonstrate that the CTD′s presence is necessary for the maintenance of full ATPase and helicase activities. We speculate that this high interdomain flexibility couples Rep′s activities as initiators and as helicases.
Collapse
Affiliation(s)
- Cuncun Qiao
- Department of Medical Biochemistry and Biophysics, Umeå University , Umeå , Sweden
- Wallenberg Centre for Molecular Medicine , Umeå , Sweden
| | - Gianluca Debiasi-Anders
- Department of Medical Biochemistry and Biophysics, Umeå University , Umeå , Sweden
- Wallenberg Centre for Molecular Medicine , Umeå , Sweden
| | - Ignacio Mir-Sanchis
- Department of Medical Biochemistry and Biophysics, Umeå University , Umeå , Sweden
- Wallenberg Centre for Molecular Medicine , Umeå , Sweden
| |
Collapse
|
9
|
Behrmann MS, Trakselis MA. In vivo fluorescent TUNEL detection of single stranded DNA gaps and breaks induced by dnaB helicase mutants in Escherichia coli. Methods Enzymol 2022; 672:125-142. [DOI: 10.1016/bs.mie.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Abstract
Ring-shaped hexameric helicases are essential motor proteins that separate duplex nucleic acid strands for DNA replication, recombination, and transcriptional regulation. Two evolutionarily distinct lineages of these enzymes, predicated on RecA and AAA+ ATPase folds, have been identified and characterized to date. Hexameric helicases couple NTP hydrolysis with conformational changes that move nucleic acid substrates through a central pore in the enzyme. How hexameric helicases productively engage client DNA or RNA segments and use successive rounds of NTPase activity to power translocation and unwinding have been longstanding questions in the field. Recent structural and biophysical findings are beginning to reveal commonalities in NTP hydrolysis and substrate translocation by diverse hexameric helicase families. Here, we review these molecular mechanisms and highlight aspects of their function that are yet to be understood.
Collapse
|
11
|
Behrmann MS, Perera HM, Hoang JM, Venkat TA, Visser BJ, Bates D, Trakselis MA. Targeted chromosomal Escherichia coli:dnaB exterior surface residues regulate DNA helicase behavior to maintain genomic stability and organismal fitness. PLoS Genet 2021; 17:e1009886. [PMID: 34767550 PMCID: PMC8612530 DOI: 10.1371/journal.pgen.1009886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/24/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022] Open
Abstract
Helicase regulation involves modulation of unwinding speed to maintain coordination of DNA replication fork activities and is vital for replisome progression. Currently, mechanisms for helicase regulation that involve interactions with both DNA strands through a steric exclusion and wrapping (SEW) model and conformational shifts between dilated and constricted states have been examined in vitro. To better understand the mechanism and cellular impact of helicase regulation, we used CRISPR-Cas9 genome editing to study four previously identified SEW-deficient mutants of the bacterial replicative helicase DnaB. We discovered that these four SEW mutations stabilize constricted states, with more fully constricted mutants having a generally greater impact on genomic stress, suggesting a dynamic model for helicase regulation that involves both excluded strand interactions and conformational states. These dnaB mutations result in increased chromosome complexities, less stable genomes, and ultimately less viable and fit strains. Specifically, dnaB:mut strains present with increased mutational frequencies without significantly inducing SOS, consistent with leaving single-strand gaps in the genome during replication that are subsequently filled with lower fidelity. This work explores the genomic impacts of helicase dysregulation in vivo, supporting a combined dynamic regulatory mechanism involving a spectrum of DnaB conformational changes and relates current mechanistic understanding to functional helicase behavior at the replication fork. DNA replication is a vital biological process, and the proteins involved are structurally and functionally conserved across all domains of life. As our fundamental knowledge of genes and genetics grows, so does our awareness of links between acquired genetic mutations and disease. Understanding how genetic material is replicated accurately and efficiently and with high fidelity is the foundation to identifying and solving genome-based diseases. E. coli are model organisms, containing core replisome proteins, but lack the complexity of the human replication system, making them ideal for investigating conserved replisome behaviors. The helicase enzyme acts at the forefront of the replication fork to unwind the DNA helix and has also been shown to help coordinate other replisome functions. In this study, we examined specific mutations in the helicase that have been shown to regulate its conformation and speed of unwinding. We investigate how these mutations impact the growth, fitness, and cellular morphology of bacteria with the goal of understanding how helicase regulation mechanisms affect an organism’s ability to survive and maintain a stable genome.
Collapse
Affiliation(s)
- Megan S. Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Himasha M. Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Joy M. Hoang
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Trisha A. Venkat
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Bryan J. Visser
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael A. Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Determining translocation orientations of nucleic acid helicases. Methods 2021; 204:160-171. [PMID: 34758393 PMCID: PMC9076756 DOI: 10.1016/j.ymeth.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Helicase enzymes translocate along an RNA or DNA template with a defined polarity to unwind, separate, or remodel duplex strands for a variety of genome maintenance processes. Helicase mutations are commonly associated with a variety of diseases including aging, cancer, and neurodegeneration. Biochemical characterization of these enzymes has provided a wealth of information on the kinetics of unwinding and substrate preferences, and several high-resolution structures of helicases alone and bound to oligonucleotides have been solved. Together, they provide mechanistic insights into the structural translocation and unwinding orientations of helicases. However, these insights rely on structural inferences derived from static snapshots. Instead, continued efforts should be made to combine structure and kinetics to better define active translocation orientations of helicases. This review explores many of the biochemical and biophysical methods utilized to map helicase binding orientation to DNA or RNA substrates and includes several time-dependent methods to unequivocally map the active translocation orientation of these enzymes to better define the active leading and trailing faces.
Collapse
|
13
|
Single-molecule studies of helicases and translocases in prokaryotic genome-maintenance pathways. DNA Repair (Amst) 2021; 108:103229. [PMID: 34601381 DOI: 10.1016/j.dnarep.2021.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022]
Abstract
Helicases involved in genomic maintenance are a class of nucleic-acid dependent ATPases that convert the energy of ATP hydrolysis into physical work to execute irreversible steps in DNA replication, repair, and recombination. Prokaryotic helicases provide simple models to understand broadly conserved molecular mechanisms involved in manipulating nucleic acids during genome maintenance. Our understanding of the catalytic properties, mechanisms of regulation, and roles of prokaryotic helicases in DNA metabolism has been assembled through a combination of genetic, biochemical, and structural methods, further refined by single-molecule approaches. Together, these investigations have constructed a framework for understanding the mechanisms that maintain genomic integrity in cells. This review discusses recent single-molecule insights into molecular mechanisms of prokaryotic helicases and translocases.
Collapse
|
14
|
Spinks RR, Spenkelink LM, Dixon NE, van Oijen AM. Single-Molecule Insights Into the Dynamics of Replicative Helicases. Front Mol Biosci 2021; 8:741718. [PMID: 34513934 PMCID: PMC8426354 DOI: 10.3389/fmolb.2021.741718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Helicases are molecular motors that translocate along single-stranded DNA and unwind duplex DNA. They rely on the consumption of chemical energy from nucleotide hydrolysis to drive their translocation. Specialized helicases play a critically important role in DNA replication by unwinding DNA at the front of the replication fork. The replicative helicases of the model systems bacteriophages T4 and T7, Escherichia coli and Saccharomyces cerevisiae have been extensively studied and characterized using biochemical methods. While powerful, their averaging over ensembles of molecules and reactions makes it challenging to uncover information related to intermediate states in the unwinding process and the dynamic helicase interactions within the replisome. Here, we describe single-molecule methods that have been developed in the last few decades and discuss the new details that these methods have revealed about replicative helicases. Applying methods such as FRET and optical and magnetic tweezers to individual helicases have made it possible to access the mechanistic aspects of unwinding. It is from these methods that we understand that the replicative helicases studied so far actively translocate and then passively unwind DNA, and that these hexameric enzymes must efficiently coordinate the stepping action of their subunits to achieve unwinding, where the size of each step is prone to variation. Single-molecule fluorescence microscopy methods have made it possible to visualize replicative helicases acting at replication forks and quantify their dynamics using multi-color colocalization, FRAP and FLIP. These fluorescence methods have made it possible to visualize helicases in replication initiation and dissect this intricate protein-assembly process. In a similar manner, single-molecule visualization of fluorescent replicative helicases acting in replication identified that, in contrast to the replicative polymerases, the helicase does not exchange. Instead, the replicative helicase acts as the stable component that serves to anchor the other replication factors to the replisome.
Collapse
Affiliation(s)
- Richard R Spinks
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
15
|
Spinks RR, Spenkelink LM, Stratmann SA, Xu ZQ, Stamford NPJ, Brown SE, Dixon NE, Jergic S, van Oijen AM. DnaB helicase dynamics in bacterial DNA replication resolved by single-molecule studies. Nucleic Acids Res 2021; 49:6804-6816. [PMID: 34139009 PMCID: PMC8266626 DOI: 10.1093/nar/gkab493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
In Escherichia coli, the DnaB helicase forms the basis for the assembly of the DNA replication complex. The stability of DnaB at the replication fork is likely important for successful replication initiation and progression. Single-molecule experiments have significantly changed the classical model of highly stable replication machines by showing that components exchange with free molecules from the environment. However, due to technical limitations, accurate assessments of DnaB stability in the context of replication are lacking. Using in vitro fluorescence single-molecule imaging, we visualise DnaB loaded on forked DNA templates. That these helicases are highly stable at replication forks, indicated by their observed dwell time of ∼30 min. Addition of the remaining replication factors results in a single DnaB helicase integrated as part of an active replisome. In contrast to the dynamic behaviour of other replisome components, DnaB is maintained within the replisome for the entirety of the replication process. Interestingly, we observe a transient interaction of additional helicases with the replication fork. This interaction is dependent on the τ subunit of the clamp-loader complex. Collectively, our single-molecule observations solidify the role of the DnaB helicase as the stable anchor of the replisome, but also reveal its capacity for dynamic interactions.
Collapse
Affiliation(s)
- Richard R Spinks
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Sarah A Stratmann
- Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - N Patrick J Stamford
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Susan E Brown
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia.,Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
16
|
Schauer GD, Spenkelink LM, Lewis JS, Yurieva O, Mueller SH, van Oijen AM, O'Donnell ME. Replisome bypass of a protein-based R-loop block by Pif1. Proc Natl Acad Sci U S A 2020; 117:30354-30361. [PMID: 33199603 PMCID: PMC7720201 DOI: 10.1073/pnas.2020189117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Efficient and faithful replication of the genome is essential to maintain genome stability. Replication is carried out by a multiprotein complex called the replisome, which encounters numerous obstacles to its progression. Failure to bypass these obstacles results in genome instability and may facilitate errors leading to disease. Cells use accessory helicases that help the replisome bypass difficult barriers. All eukaryotes contain the accessory helicase Pif1, which tracks in a 5'-3' direction on single-stranded DNA and plays a role in genome maintenance processes. Here, we reveal a previously unknown role for Pif1 in replication barrier bypass. We use an in vitro reconstituted Saccharomyces cerevisiae replisome to demonstrate that Pif1 enables the replisome to bypass an inactive (i.e., dead) Cas9 (dCas9) R-loop barrier. Interestingly, dCas9 R-loops targeted to either strand are bypassed with similar efficiency. Furthermore, we employed a single-molecule fluorescence visualization technique to show that Pif1 facilitates this bypass by enabling the simultaneous removal of the dCas9 protein and the R-loop. We propose that Pif1 is a general displacement helicase for replication bypass of both R-loops and protein blocks.
Collapse
Affiliation(s)
- Grant D Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523;
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Olga Yurieva
- HHMI, Rockefeller University, New York, NY 10065
- Laboratory of DNA Replication, Rockefeller University, New York, NY 10065
| | - Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia;
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Michael E O'Donnell
- HHMI, Rockefeller University, New York, NY 10065;
- Laboratory of DNA Replication, Rockefeller University, New York, NY 10065
| |
Collapse
|