1
|
Norekian TP, Moroz LL. The distribution and evolutionary dynamics of dopaminergic neurons in molluscs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600886. [PMID: 38979169 PMCID: PMC11230423 DOI: 10.1101/2024.06.26.600886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dopamine is one of the most versatile neurotransmitters in invertebrates. It's distribution and plethora of functions is likely coupled to feeding ecology, especially in Euthyneura (the largest clade of molluscs), which presents the broadest spectrum of environmental adaptations. Still, the analyses of dopamine-mediated signaling were dominated by studies of grazers. Here, we characterize the distribution of dopaminergic neurons in representatives of two distinct ecological groups: the sea angel - obligate predatory pelagic mollusc Clione limacina (Pteropoda, Gymnosomata) and its prey - the sea devil Limacina helicina (Pteropoda, Thecosomata) as well as the plankton eater Melibe leonina (Nudipleura, Nudibranchia). By using tyrosine hydroxylase-immunoreactivity (TH-ir) as a reporter, we showed that the dopaminergic system is moderately conservative among euthyneurans. Across all studied species, small numbers of dopaminergic neurons in the central ganglia contrast to significant diversification of TH-ir neurons in the peripheral nervous system, primarily representing sensory-like cells, which predominantly concentrated in the chemotactic areas and projecting afferent axons to the central nervous system. Combined with α-tubulin immunoreactivity, this study illuminates the unprecedented complexity of peripheral neural systems in gastropod molluscs, with lineage-specific diversification of sensory and modulatory functions.
Collapse
Affiliation(s)
| | - Leonid L. Moroz
- Whitney Laboratory, University of Florida, St. Augustine, FL, USA
- Departments of Neuroscience and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Tang KJ, Zhao Y, Tao X, Li J, Chen Y, Holland DC, Jin TY, Wang AY, Xiang L. Catecholamine Derivatives: Natural Occurrence, Structural Diversity, and Biological Activity. JOURNAL OF NATURAL PRODUCTS 2023; 86:2592-2619. [PMID: 37856864 DOI: 10.1021/acs.jnatprod.3c00465] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Catecholamines (CAs) are aromatic amines containing a 3,4-dihydroxyphenyl nucleus and an amine side chain. Representative CAs included the endogenous neurotransmitters epinephrine, norepinephrine, and dopamine. CAs and their derivatives are good resources for the development of sympathomimetic or central nervous system drugs, while they also provide ligands important for G-protein coupled receptor (GPCR) research. CAs are of broad interest in the fields of chemical, biological, medical, and material sciences due to their high adhesive capacities, chemical reactivities, metal-chelating abilities, redox activities, excellent biocompatibilities, and ease of degradability. Herein, we summarize CAs derivatives isolated and identified from microorganisms, plants, insects, and marine invertebrates in recent decades, alongside their wide range of reported biological activities. The aim of this review is to provide an overview of the structural and biological diversities of CAs, the regularity of their natural occurrences, and insights toward future research and development pertinent to this important class of naturally occurring compounds.
Collapse
Affiliation(s)
- Kai-Jun Tang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yu Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Xu Tao
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Jing Li
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yu Chen
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Darren C Holland
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States of America
| | - Tian-Yun Jin
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States of America
| | - Ao-Yun Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Lan Xiang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
3
|
Duchatelet L, Coubris C, Pels C, Dupont ST, Mallefet J. Catecholamine Involvement in the Bioluminescence Control of Two Species of Anthozoans. Life (Basel) 2023; 13:1798. [PMID: 37763202 PMCID: PMC10533100 DOI: 10.3390/life13091798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Bioluminescence, the ability of living organisms to emit visible light, is an important ecological feature for many marine species. To fulfil the ecological role (defence, offence, or communication), bioluminescence needs to be finely controlled. While many benthic anthozoans are luminous, the physiological control of light emission has only been investigated in the sea pansy, Renilla koellikeri. Through pharmacological investigations, a nervous catecholaminergic bioluminescence control was demonstrated for the common sea pen, Pennatula phosphorea, and the tall sea pen, Funiculina quadrangularis. Results highlight the involvement of adrenaline as the main neuroeffector triggering clusters of luminescent flashes. While noradrenaline and octopamine elicit flashes in P. phosphorea, these two biogenic amines do not trigger significant light production in F. quadrangularis. All these neurotransmitters act on both the endodermal photocytes located at the base and crown of autozooids and specific chambers of water-pumping siphonozooids. Combined with previous data on R. koellikeri, our results suggest that a catecholaminergic control mechanisms of bioluminescence may be conserved in Anthozoans.
Collapse
Affiliation(s)
- Laurent Duchatelet
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium; (C.C.); (C.P.); (J.M.)
| | - Constance Coubris
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium; (C.C.); (C.P.); (J.M.)
| | - Christopher Pels
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium; (C.C.); (C.P.); (J.M.)
| | - Sam T. Dupont
- Department of Biological & Environmental Sciences, University of Gothenburg, 451 78 Fiskebäckskil, Sweden;
- Marine Environment Laboratories, International Atomic Energy Agency, MC-98000 Monaco, Monaco
| | - Jérôme Mallefet
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium; (C.C.); (C.P.); (J.M.)
| |
Collapse
|
4
|
Sleep and Neuroimmunomodulation for Maintenance of Optimum Brain Function: Role of Noradrenaline. Brain Sci 2022; 12:brainsci12121725. [PMID: 36552184 PMCID: PMC9776456 DOI: 10.3390/brainsci12121725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Immune function and sleep are two normal physiological processes to protect the living organism from falling sick. There is hardly any disease in which they remain unaffected, though the quantum of effect may differ. Therefore, we propose the existence of a strong correlation between sleep (quality or quantity) and immune response. This may be supported by the fact that sleep loss modulates many of the immunological molecules, which includes interferons; however, not much is known about their mechanism of action. Sleep is divided into rapid eye movement sleep (REMS) and non-REMS. For practical reasons, experimental studies have been conducted mostly by inducing loss of REMS. It has been shown that withdrawal of noradrenaline (NA) is a necessity for generation of REMS. Moreover, NA level increases in the brain upon REMS loss and the elevated NA is responsible for many of the sleep loss-associated symptoms. In this review, we describe how sleep (and its disturbance/loss) modulates the immune system by modulating the NA level in the brain or vice versa to maintain immune functions, physiological homeostasis, and normal healthy living. The increased levels of NA during REMS loss may cause neuroinflammation possibly by glial activation (as NA is a key modulator of microglia). Therefore, maintaining sleep hygiene plays a crucial role for a normal healthy living.
Collapse
|
5
|
Stereoselectivity in the Membrane Transport of Phenylethylamine Derivatives by Human Monoamine Transporters and Organic Cation Transporters 1, 2, and 3. Biomolecules 2022; 12:biom12101507. [PMID: 36291716 PMCID: PMC9599461 DOI: 10.3390/biom12101507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Stereoselectivity is well known and very pronounced in drug metabolism and receptor binding. However, much less is known about stereoselectivity in drug membrane transport. Here, we characterized the stereoselective cell uptake of chiral phenylethylamine derivatives by human monoamine transporters (NET, DAT, and SERT) and organic cation transporters (OCT1, OCT2, and OCT3). Stereoselectivity differed extensively between closely related transporters. High-affinity monoamine transporters (MATs) showed up to 2.4-fold stereoselective uptake of norepinephrine and epinephrine as well as of numerous analogs. While NET and DAT preferentially transported (S)-norepinephrine, SERT preferred the (R)-enantiomer. In contrast, NET and DAT showed higher transport for (R)-epinephrine and SERT for (S)-epinephrine. Generally, MAT stereoselectivity was lower than expected from their high affinity to several catecholamines and from the high stereoselectivity of some inhibitors used as antidepressants. Additionally, the OCTs differed strongly in their stereoselectivity. While OCT1 showed almost no stereoselective uptake, OCT2 was characterized by a roughly 2-fold preference for most (R)-enantiomers of the phenylethylamines. In contrast, OCT3 transported norphenylephrine and phenylephrine with 3.9-fold and 3.3-fold preference for their (R)-enantiomers, respectively, while the para-hydroxylated octopamine and synephrine showed no stereoselective OCT3 transport. Altogether, our data demonstrate that stereoselectivity is highly transporter-to-substrate specific and highly diverse even between homologous transporters.
Collapse
|
6
|
Prestes dos Santos Tavares C, Zhao M, Lopes Vogt É, Felipe Argenta Model J, Sommer Vinagre A, de Assis Teixeira da Silva U, Ostrensky A, James Schott E. High prevalence of CsRV2 in cultured Callinectes danae: Potential impacts on soft-shell crab production in Brazil. J Invertebr Pathol 2022; 190:107739. [DOI: 10.1016/j.jip.2022.107739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
|
7
|
Carving the senescent phenotype by the chemical reactivity of catecholamines: An integrative review. Ageing Res Rev 2022; 75:101570. [PMID: 35051644 DOI: 10.1016/j.arr.2022.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/21/2022]
Abstract
Macromolecules damaged by covalent modifications produced by chemically reactive metabolites accumulate in the slowly renewable components of living bodies and compromise their functions. Among such metabolites, catecholamines (CA) are unique, compared with the ubiquitous oxygen, ROS, glucose and methylglyoxal, in that their high chemical reactivity is confined to a limited set of cell types, including the dopaminergic and noradrenergic neurons and their direct targets, which suffer from CA propensities for autoxidation yielding toxic quinones, and for Pictet-Spengler reactions with carbonyl-containing compounds, which yield mitochondrial toxins. The functions progressively compromised because of that include motor performance, cognition, reward-driven behaviors, emotional tuning, and the neuroendocrine control of reproduction. The phenotypic manifestations of the resulting disorders culminate in such conditions as Parkinson's and Alzheimer's diseases, hypertension, sarcopenia, and menopause. The reasons to suspect that CA play some special role in aging accumulated since early 1970-ies. Published reviews address the role of CA hazardousness in the development of specific aging-associated diseases. The present integrative review explores how the bizarre discrepancy between CA hazardousness and biological importance could have emerged in evolution, how much does the chemical reactivity of CA contribute to the senescent phenotype in mammals, and what can be done with it.
Collapse
|
8
|
Neuparth T, Alves N, Machado AM, Pinheiro M, Montes R, Rodil R, Barros S, Ruivo R, Castro LFC, Quintana JB, Santos MM. Neuroendocrine pathways at risk? Simvastatin induces inter and transgenerational disruption in the keystone amphipod Gammarus locusta. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106095. [PMID: 35121565 DOI: 10.1016/j.aquatox.2022.106095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The primary focus of environmental toxicological studies is to address the direct effects of chemicals on exposed organisms (parental generation - F0), mostly overlooking effects on subsequent non-exposed generations (F1 and F2 - intergenerational and F3 transgenerational, respectively). Here, we addressed the effects of simvastatin (SIM), one of the most widely prescribed human pharmaceuticals for the primary treatment of hypercholesterolemia, using the keystone crustacean Gammarus locusta. We demonstrate that SIM, at environmentally relevant concentrations, has significant inter and transgenerational (F1 and F3) effects in key signaling pathways involved in crustaceans' neuroendocrine regulation (Ecdysteroids, Catecholamines, NO/cGMP/PKG, GABAergic and Cholinergic signaling pathways), concomitantly with changes in apical endpoints, such as depressed reproduction and growth. These findings are an essential step to improve hazard and risk assessment of biological active compounds, such as SIM, and highlight the importance of studying the transgenerational effects of environmental chemicals in animals' neuroendocrine regulation.
Collapse
Affiliation(s)
- T Neuparth
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - N Alves
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - A M Machado
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - M Pinheiro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - R Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - R Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - S Barros
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Quinta de Prados - Ed. Blocos Laboratoriais C1.10, 5000-801, Vila Real, Portugal
| | - R Ruivo
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - L Filipe C Castro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - J B Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - M M Santos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
9
|
Kirshenboim I, Aviner B, Itskovits E, Zaslaver A, Broday L. Dopamine-dependent biphasic behaviour under 'deep diving' conditions in Caenorhabditis elegans. Proc Biol Sci 2021; 288:20210128. [PMID: 33715430 PMCID: PMC7944115 DOI: 10.1098/rspb.2021.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Underwater divers are susceptible to neurological risks due to their exposure to increased pressure. Absorption of elevated partial pressure of inert gases such as helium and nitrogen may lead to nitrogen narcosis. Although the symptoms of nitrogen narcosis are known, the molecular mechanisms underlying these symptoms have not been elucidated. Here, we examined the behaviour of the soil nematode Caenorhabditis elegans under scuba diving conditions. We analysed wild-type animals and mutants in the dopamine pathway under hyperbaric conditions, using several gas compositions and under varying pressure levels. We found that the animals changed their speed on a flat bacterial surface in response to pressure in a biphasic mode that depended on dopamine. Dopamine-deficient cat-2 mutant animals did not exhibit a biphasic response in high pressure, while the extracellular accumulation of dopamine in dat-1 mutant animals mildly influenced this response. Our data demonstrate that in C. elegans, similarly to mammalian systems, dopamine signalling is involved in the response to high pressure. This study establishes C. elegans as a powerful system to elucidate the molecular mechanisms that underly nitrogen toxicity in response to high pressure.
Collapse
Affiliation(s)
- Inbar Kirshenboim
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| | - Ben Aviner
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| | - Eyal Itskovits
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Alon Zaslaver
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Hidalgo-Acosta JC, Jaramillo AM, Cortés MT. Distinguishing catecholamines: Dopamine determination in the presence of epinephrine in water/acetonitrile mixtures. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Cloning and characterisation of NMDA receptors in the Pacific oyster, Crassostrea gigas (Thunberg, 1793) in relation to metamorphosis and catecholamine synthesis. Dev Biol 2020; 469:144-159. [PMID: 33131707 DOI: 10.1016/j.ydbio.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/30/2023]
Abstract
Bivalve metamorphosis is a developmental transition from a free-living larva to a benthic juvenile (spat), regulated by a complex interaction of neurotransmitters and neurohormones such as L-DOPA and epinephrine (catecholamine). We recently suggested an N-Methyl-D-aspartate (NMDA) receptor pathway as an additional and previously unknown regulator of bivalve metamorphosis. To explore this theory further, we successfully induced metamorphosis in the Pacific oyster, Crassostrea gigas, by exposing competent larvae to L-DOPA, epinephrine, MK-801 and ifenprodil. Subsequently, we cloned three NMDA receptor subunits CgNR1, CgNR2A and CgNR2B, with sequence analysis suggesting successful assembly of functional NMDA receptor complexes and binding to natural occurring agonists and the channel blocker MK-801. NMDA receptor subunits are expressed in competent larvae, during metamorphosis and in spat, but this expression is neither self-regulated nor regulated by catecholamines. In-situ hybridisation of CgNR1 in competent larvae identified NMDA receptor presence in the apical organ/cerebral ganglia area with a potential sensory function, and in the nervous network of the foot indicating an additional putative muscle regulatory function. Furthermore, phylogenetic analyses identified molluscan-specific gene expansions of key enzymes involved in catecholamine biosynthesis. However, exposure to MK-801 did not alter the expression of selected key enzymes, suggesting that NMDA receptors do not regulate the biosynthesis of catecholamines via gene expression.
Collapse
|
12
|
D’Aniello E, Paganos P, Anishchenko E, D’Aniello S, Arnone MI. Comparative Neurobiology of Biogenic Amines in Animal Models in Deuterostomes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.587036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Mello ADA, Geihs MA, Nogueira TDS, Allodi S, Vargas MA, de Barros CM. Oxidative stress: Noradrenaline as an integrator of responses in the neuroendocrine and immune systems of the ascidian Phallusia nigra. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103573. [PMID: 31918205 DOI: 10.1016/j.dci.2019.103573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Neurotransmitters play key roles in regulating the homeostasis of organisms in stressful environments. Noradrenaline (NA) is the main neurotransmitter known to modulate immunological parameters, and is important in the crosstalk between the neuroendocrine and immune systems. In this study, using the ascidian Phallusia nigra, we analyzed the level of catecholamines (CA) in the plasma after mechanical stress, and the effect of NA on the oxidative stress (OS) displayed by immune cells. We measured the concentration of reactive oxygen species (ROS), and analyzed whether α- and/or β-adrenoreceptors (ARs) are involved in ROS modulation, lipid peroxidation (LPO), antioxidant capacity against peroxyl radicals (ACAP), and activity of the enzymes catalase (CAT) and glutathione S transferase (GST) in immune cells after incubation with different concentrations of NA, with or without zymosan (ZnA) challenge. The results showed that NA reduced ROS production, even in immune cells challenged with ZnA, and that this modulation occurred through α1-and β1-ARs. ACAP levels showed different responses, depending on whether immune cells were challenged or not with ZnA, and also depending on the NA concentration: 1.0 μM NA increased ACAP levels, but 10.0 μM reduced ACAP levels. NA enhanced the activity of CAT and GST in ZnA-challenged and non-challenged immune cells, while 1.0 and 10.0 μM NA effectively reduced LPO. Taken together, these results show that NA can protect cells from ROS damage, decreasing ROS production and LPO, and enhancing ACAP as well as the activity of CAT and GST. The approach used here with this model contributes to understanding the relationship between the neuroendocrine and immune systems, revealing new effects of NA on OS regulation in ascidians.
Collapse
Affiliation(s)
- Andressa de Abreu Mello
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764, Macaé, RJ, 27965-045, Brazil; Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G2-001, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ, Av. Aluizio da Silva Gomes, 50, Macaé, RJ, 27930-560, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G1-003, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Márcio Alberto Geihs
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, Km 8, Rio Grande, RS, 96201-900, Brazil
| | - Thuany da Silva Nogueira
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764, Macaé, RJ, 27965-045, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G2-001, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G1-003, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Marcelo Alves Vargas
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, Km 8, Rio Grande, RS, 96201-900, Brazil
| | - Cintia Monteiro de Barros
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764, Macaé, RJ, 27965-045, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ, Av. Aluizio da Silva Gomes, 50, Macaé, RJ, 27930-560, Brazil.
| |
Collapse
|
14
|
Auletta A, Rue MCP, Harley CM, Mesce KA. Tyrosine hydroxylase immunolabeling reveals the distribution of catecholaminergic neurons in the central nervous systems of the spiders Hogna lenta (Araneae: Lycosidae) and Phidippus regius (Araneae: Salticidae). J Comp Neurol 2020; 528:211-230. [PMID: 31343075 DOI: 10.1002/cne.24748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/12/2022]
Abstract
With over 48,000 species currently described, spiders (Arthropoda: Chelicerata: Araneae) comprise one of the most diverse groups of animals on our planet, and exhibit an equally wide array of fascinating behaviors. Studies of central nervous systems (CNSs) in spiders, however, are relatively sparse, and no reports have yet characterized catecholaminergic (dopamine [DA]- or norepinephrine-synthesizing) neurons in any spider species. Because these neuromodulators are especially important for sensory and motor processing across animal taxa, we embarked on a study to identify catecholaminergic neurons in the CNS of the wolf spider Hogna lenta (Lycosidae) and the jumping spider Phidippus regius (Salticidae). These neurons were most effectively labeled with an antiserum raised against tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis. We found extensive catecholamine-rich neuronal fibers in the first- and second-order optic neuropils of the supraesophageal mass (brain), as well as in the arcuate body, a region of the brain thought to receive visual input and which may be involved in higher order sensorimotor integration. This structure likely shares evolutionary origins with the DA-enriched central complex of the Mandibulata. In the subesophageal mass, we detected an extensive filigree of TH-immunoreactive (TH-ir) arborizations in the appendage neuromeres, as well as three prominent plurisegmental fiber tracts. A vast abundance of TH-ir somata were located in the opisthosomal neuromeres, the largest of which appeared to project to the brain and decorate the appendage neuromeres. Our study underscores the important roles that the catecholamines likely play in modulating spider vision, higher order sensorimotor processing, and motor patterning.
Collapse
Affiliation(s)
- Anthony Auletta
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota
| | - Mara C P Rue
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota
| | - Cynthia M Harley
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota
| | - Karen A Mesce
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota.,Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
15
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
16
|
Model JFA, Dos Santos JT, Da Silva RSM, Vinagre AS. Metabolic effects of epinephrine on the crab Neohelice granulata. Comp Biochem Physiol A Mol Integr Physiol 2019; 231:111-118. [PMID: 30735703 DOI: 10.1016/j.cbpa.2019.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/29/2022]
Abstract
Although widely known for their involvement in the control of carbohydrate and lipid metabolism of vertebrates, the participation of catecholamines (CAs) in the metabolism of invertebrates is less understood. This study was designed to identify the physiological role of Epinephrine (E) in the intermediary metabolism of the burrowing crab Neohelice granulata and how E regulates the metabolism in crabs fed with a high-carbohydrate (HC) or a high-protein (HP) diet. To answer these questions, we evaluated in vivo the effects of E injections on glucose and triglycerides in the hemolymph and tissue glycogen levels of crabs fed with HC or HP diet. An in vitro investigation was carried out to assess the direct effects of E on glycogenolysis, lipolysis and glycolysis pathways in the hepatopancreas, mandibular muscle and anterior and posterior gills of this crab. E injections increased glucose and did not affect triglycerides levels in the hemolymph of either group of crabs, and E decreased glycogen in the hepatopancreas and mandibular muscle only in HP crabs, suggesting that these effects may be mediated by the crustacean hyperglycemic hormone (CHH). When the tissues were incubated with different concentrations of E, the concentration of glucose released to the medium decreased in the hepatopancreas and posterior gills, while glucose oxidation increased in the posterior gills of HP crabs. Incubation with E did not alter any parameter in tissues of HC crabs. These effects suggest that E may be involved in the metabolic response to osmotic stress.
Collapse
|
17
|
Smith MK, Bose U, Mita M, Hall MR, Elizur A, Motti CA, Cummins SF. Differences in Small Molecule Neurotransmitter Profiles From the Crown-of-Thorns Seastar Radial Nerve Revealed Between Sexes and Following Food-Deprivation. Front Endocrinol (Lausanne) 2018; 9:551. [PMID: 30374327 PMCID: PMC6196772 DOI: 10.3389/fendo.2018.00551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/30/2018] [Indexed: 01/14/2023] Open
Abstract
Neurotransmitters serve as chemical mediators of cell communication, and are known to have important roles in regulating numerous physiological and metabolic events in eumetazoans. The Crown-of-Thorns Seastar (COTS) is an asteroid echinoderm that has been the focus of numerous ecological studies due to its negative impact on coral reefs when in large numbers. Research devoted to its neural signaling, from basic anatomy to the key small neurotransmitters, would expand our current understanding of neural-driven biological processes, such as growth and reproduction, and offers a new approach to exploring the propensity for COTS population explosions and subsequent collapse. In this study we investigated the metabolomic profiles of small molecule neurotransmitters in the COTS radial nerve cord. Multivariate analysis shows differential abundance of small molecule neurotransmitters in male and female COTS, and in food-deprived individuals with significant differences between sexes in gamma-aminobutyric acid (GABA), histamine and serotonin, and significant differences in histamine and serotonin between satiation states. Annotation established that the majority of biosynthesis enzyme genes are present in the COTS genome. The spatial distribution of GABA, histamine and serotonin in the radial nerve cord was subsequently confirmed by immunolocalization; serotonin is most prominent within the ectoneural regions, including unique neural bulbs, while GABA and histamine localize primarily within neuropil fibers. Glutamic acid, which was also found in high relative abundance and is a precursor of GABA, is known as a spawning inhibitor in seastars, and as such was tested for inhibition of ovulation ex-vivo which resulted in complete inhibition of oocyte maturation and ovulation induced by 1-Methyladenine. These findings not only advance our knowledge of echinoderm neural signaling processes but also identify potential targets for developing novel approaches for COTS biocontrol.
Collapse
Affiliation(s)
- Meaghan K. Smith
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, DC, Australia
| | - Utpal Bose
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, DC, Australia
| | - Masatoshi Mita
- Center for Advanced Biomedical Sciences, TWIns Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Michael R. Hall
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, QLD, Australia
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, DC, Australia
| | - Cherie A. Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, QLD, Australia
| | - Scott F. Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, DC, Australia
| |
Collapse
|
18
|
Abstract
In response to adverse environmental conditions many organisms from nematodes to mammals deploy a dormancy strategy, causing states of developmental or reproductive arrest that enhance somatic maintenance and survival ability at the expense of growth or reproduction. Dormancy regulation has been studied in C. elegans and in several insects, but how neurosensory mechanisms act to relay environmental cues to the endocrine system in order to induce dormancy remains unclear. Here we examine this fundamental question by genetically manipulating aminergic neurotransmitter signaling in Drosophila melanogaster. We find that both serotonin and dopamine enhance adult ovarian dormancy, while the downregulation of their respective signaling pathways in endocrine cells or tissues (insulin producing cells, fat body, corpus allatum) reduces dormancy. In contrast, octopamine signaling antagonizes dormancy. Our findings enhance our understanding of the ability of organisms to cope with unfavorable environments and illuminate some of the relevant signaling pathways.
Collapse
|
19
|
Kamhi JF, Arganda S, Moreau CS, Traniello JFA. Origins of Aminergic Regulation of Behavior in Complex Insect Social Systems. Front Syst Neurosci 2017; 11:74. [PMID: 29066958 PMCID: PMC5641352 DOI: 10.3389/fnsys.2017.00074] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 09/22/2017] [Indexed: 01/03/2023] Open
Abstract
Neuromodulators are conserved across insect taxa, but how biogenic amines and their receptors in ancestral solitary forms have been co-opted to control behaviors in derived socially complex species is largely unknown. Here we explore patterns associated with the functions of octopamine (OA), serotonin (5-HT) and dopamine (DA) in solitary ancestral insects and their derived functions in eusocial ants, bees, wasps and termites. Synthesizing current findings that reveal potential ancestral roles of monoamines in insects, we identify physiological processes and conserved behaviors under aminergic control, consider how biogenic amines may have evolved to modulate complex social behavior, and present focal research areas that warrant further study.
Collapse
Affiliation(s)
- J. Frances Kamhi
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sara Arganda
- Department of Biology, Boston University, Boston, MA, United States
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Corrie S. Moreau
- Department of Science and Education, Field Museum of Natural History, Chicago, IL, United States
| | - James F. A. Traniello
- Department of Biology, Boston University, Boston, MA, United States
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
20
|
Buckemüller C, Siehler O, Göbel J, Zeumer R, Ölschläger A, Eisenhardt D. Octopamine Underlies the Counter-Regulatory Response to a Glucose Deficit in Honeybees ( Apis mellifera). Front Syst Neurosci 2017; 11:63. [PMID: 28912693 PMCID: PMC5582081 DOI: 10.3389/fnsys.2017.00063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/08/2017] [Indexed: 11/24/2022] Open
Abstract
An animal’s internal state is a critical parameter required for adaptation to a given environment. An important aspect of an animal’s internal state is the energy state that is adjusted to the needs of an animal by energy homeostasis. Glucose is one essential source of energy, especially for the brain. A shortage of glucose therefore triggers a complex response to restore the animal’s glucose supply. This counter-regulatory response to a glucose deficit includes metabolic responses like the mobilization of glucose from internal glucose stores and behavioral responses like increased foraging and a rapid intake of food. In mammals, the catecholamines adrenalin and noradrenalin take part in mediating these counter-regulatory responses to a glucose deficit. One candidate molecule that might play a role in these processes in insects is octopamine (OA). It is an invertebrate biogenic amine and has been suggested to derive from an ancestral pathway shared with adrenalin and noradrenalin. Thus, it could be hypothesized that OA plays a role in the insect’s counter-regulatory response to a glucose deficit. Here we tested this hypothesis in the honeybee (Apis mellifera), an insect that, as an adult, mainly feeds on carbohydrates and uses these as its main source of energy. We investigated alterations of the hemolymph glucose concentration, survival, and feeding behavior after starvation and examined the impact of OA on these processes in pharmacological experiments. We demonstrate an involvement of OA in these three processes in honeybees and conclude there is an involvement of OA in regulating a bee’s metabolic, physiological, and behavioral response following a phase of prolonged glucose deficit. Thus, OA in honeybees acts similarly to adrenalin and noradrenalin in mammals in regulating an animal’s counter-regulatory response.
Collapse
Affiliation(s)
- Christina Buckemüller
- Neurobiologie, Institut für Biologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität BerlinBerlin, Germany
| | - Oliver Siehler
- Neurobiologie, Institut für Biologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität BerlinBerlin, Germany
| | - Josefine Göbel
- Neurobiologie, Institut für Biologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität BerlinBerlin, Germany
| | - Richard Zeumer
- Neurobiologie, Institut für Biologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität BerlinBerlin, Germany
| | - Anja Ölschläger
- Neurobiologie, Institut für Biologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität BerlinBerlin, Germany
| | - Dorothea Eisenhardt
- Neurobiologie, Institut für Biologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
21
|
Bauknecht P, Jékely G. Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biol 2017; 15:6. [PMID: 28137258 PMCID: PMC5282848 DOI: 10.1186/s12915-016-0341-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023] Open
Abstract
Background Norepinephrine/noradrenaline is a neurotransmitter implicated in arousal and other aspects of vertebrate behavior and physiology. In invertebrates, adrenergic signaling is considered absent and analogous functions are performed by the biogenic amines octopamine and its precursor tyramine. These chemically similar transmitters signal by related families of G-protein-coupled receptors in vertebrates and invertebrates, suggesting that octopamine/tyramine are the invertebrate equivalents of vertebrate norepinephrine. However, the evolutionary relationships and origin of these transmitter systems remain unclear. Results Using phylogenetic analysis and receptor pharmacology, here we have established that norepinephrine, octopamine, and tyramine receptors coexist in some marine invertebrates. In the protostomes Platynereis dumerilii (an annelid) and Priapulus caudatus (a priapulid), we have identified and pharmacologically characterized adrenergic α1 and α2 receptors that coexist with octopamine α, octopamine β, tyramine type 1, and tyramine type 2 receptors. These receptors represent the first examples of adrenergic receptors in protostomes. In the deuterostome Saccoglossus kowalevskii (a hemichordate), we have identified and characterized octopamine α, octopamine β, tyramine type 1, and tyramine type 2 receptors, representing the first examples of these receptors in deuterostomes. S. kowalevskii also has adrenergic α1 and α2 receptors, indicating that all three signaling systems coexist in this animal. In phylogenetic analysis, we have also identified adrenergic and tyramine receptor orthologs in xenacoelomorphs. Conclusions Our results clarify the history of monoamine signaling in bilaterians. Given that all six receptor families (two each for octopamine, tyramine, and norepinephrine) can be found in representatives of the two major clades of Bilateria, the protostomes and the deuterostomes, all six receptors must have coexisted in the last common ancestor of the protostomes and deuterostomes. Adrenergic receptors were lost from most insects and nematodes, and tyramine and octopamine receptors were lost from most deuterostomes. This complex scenario of differential losses cautions that octopamine signaling in protostomes is not a good model for adrenergic signaling in deuterostomes, and that studies of marine animals where all three transmitter systems coexist will be needed for a better understanding of the origin and ancestral functions of these transmitters. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0341-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp Bauknecht
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany.
| |
Collapse
|