1
|
Martínez-Rodríguez S, Cámara-Artigas A, Gavira JA. First 3-D structural evidence of a native-like intertwined dimer in the acylphosphatase family. Biochem Biophys Res Commun 2023; 682:85-90. [PMID: 37804591 DOI: 10.1016/j.bbrc.2023.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023]
Abstract
Acylphosphatase (AcP, EC 3.6.1.7) is a small model protein conformed by a ferredoxin-like fold, profoundly studied to get insights into protein folding and aggregation processes. Numerous studies focused on the aggregation and/or amyloidogenic properties of AcPs suggest the importance of edge-β-strands in the process. In this work, we present the first crystallographic structure of Escherichia coli AcP (EcoAcP), showing notable differences with the only available NMR structure for this enzyme. EcoAcP is crystalised as an intertwined dimer formed by replacing a single C-terminal β-strand between two protomers, suggesting a flexible character of the C-terminal edge of EcoAcP. Despite numerous works where AcP from different sources have been used as a model system for protein aggregation, our domain-swapped EcoAcP structure is the first 3-D structural evidence of native-like aggregated species for any AcP reported to date, providing clues on molecular determinants unleashing aggregation.
Collapse
Affiliation(s)
- Sergio Martínez-Rodríguez
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Avenida de La Investigación 11, Granada, 18071, Spain; Laboratorio de Estudios Cristalográficos, CSIC-UGR, Avda. de Las Palmeras 4, Armilla, Granada, 18100, Spain.
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAMBITAL), Carretera de Sacramento S/n, Almería, 04120, Spain
| | - Jose Antonio Gavira
- Laboratorio de Estudios Cristalográficos, CSIC-UGR, Avda. de Las Palmeras 4, Armilla, Granada, 18100, Spain
| |
Collapse
|
2
|
Landeta-Salgado C, Cicatiello P, Stanzione I, Medina D, Berlanga Mora I, Gomez C, Lienqueo ME. The growth of marine fungi on seaweed polysaccharides produces cerato-platanin and hydrophobin self-assembling proteins. Microbiol Res 2021; 251:126835. [PMID: 34399103 DOI: 10.1016/j.micres.2021.126835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023]
Abstract
The marine fungi Paradendryphiela salina and Talaromyces pinophilus degrade and assimilate complex substrates from plants and seaweed. Additionally, these fungi secrete surface-active proteins, identified as cerato-platanins and hydrophobins. These hydrophobic proteins have the ability to self-assemble forming amyloid-like aggregates and play an essential role in the growth and development of the filamentous fungi. It is the first time that one cerato-platanin (CP) is identified and isolated from P. salina (PsCP) and two Class I hydrophobins (HFBs) from T. pinophilus (TpHYD1 and TpHYD2). Furthermore, it is possible to extract cerato-platanins and hydrophobins using marine fungi that can feed on seaweed biomass, and through a submerged liquid fermentation process. The propensity to aggregate of these proteins has been analyzed using different techniques such as Thioflavin T fluorescence assay, Fourier-transform Infrared Spectroscopy, and Atomic Force Microscopy. Here, we show that the formation of aggregates of PsCP and TpHYD, was influenced by the carbon source from seaweed. This study highlighted the potential of these self-assembling proteins generated from a fermentation process with marine fungi and with promising properties such as conformational plasticity with extensive applications in biotechnology, pharmacy, nanotechnology, and biomedicine.
Collapse
Affiliation(s)
- Catalina Landeta-Salgado
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile
| | - Paola Cicatiello
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, I-80126 Naples, Italy
| | - Ilaria Stanzione
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, I-80126 Naples, Italy
| | - David Medina
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile
| | - Isadora Berlanga Mora
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile
| | - Carlos Gomez
- Chemistry Department, University of Valle-Yumbo, Valle del Cauca, 760501, Colombia
| | - María Elena Lienqueo
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile.
| |
Collapse
|
3
|
Altamirano-Bustamante NF, Garrido-Magaña E, Morán E, Calderón A, Pasten-Hidalgo K, Castillo-Rodríguez RA, Rojas G, Lara-Martínez R, Leyva-García E, Larralde-Laborde M, Domíguez G, Murata C, Margarita-Vazquez Y, Payro R, Barbosa M, Valderrama A, Montesinos H, Domínguez-Camacho A, García-Olmos VH, Ferrer R, Medina-Bravo PG, Santoscoy F, Revilla-Monsalve C, Jiménez-García LF, Morán J, Villalobos-Alva J, Villalobos MJ, Calzada-León R, Altamirano P, Altamirano-Bustamante MM. Protein-conformational diseases in childhood: Naturally-occurring hIAPP amyloid-oligomers and early β-cell damage in obesity and diabetes. PLoS One 2020; 15:e0237667. [PMID: 32833960 PMCID: PMC7446879 DOI: 10.1371/journal.pone.0237667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIMS This is the first time that obesity and diabetes mellitus (DM) as protein conformational diseases (PCD) are reported in children and they are typically diagnosed too late, when β-cell damage is evident. Here we wanted to investigate the level of naturally-ocurring or real (not synthetic) oligomeric aggregates of the human islet amyloid polypeptide (hIAPP) that we called RIAO in sera of pediatric patients with obesity and diabetes. We aimed to reduce the gap between basic biomedical research, clinical practice-health decision making and to explore whether RIAO work as a potential biomarker of early β-cell damage. MATERIALS AND METHODS We performed a multicentric collaborative, cross-sectional, analytical, ambispective and blinded study; the RIAO from pretreated samples (PTS) of sera of 146 pediatric patients with obesity or DM and 16 healthy children, were isolated, measured by sound indirect ELISA with novel anti-hIAPP cytotoxic oligomers polyclonal antibody (MEX1). We carried out morphological and functional studied and cluster-clinical data driven analysis. RESULTS We demonstrated by western blot, Transmission Electron Microscopy and cell viability experiments that RIAO circulate in the blood and can be measured by ELISA; are elevated in serum of childhood obesity and diabetes; are neurotoxics and works as biomarkers of early β-cell failure. We explored the range of evidence-based medicine clusters that included the RIAO level, which allowed us to classify and stratify the obesity patients with high cardiometabolic risk. CONCLUSIONS RIAO level increases as the number of complications rises; RIAOs > 3.35 μg/ml is a predictor of changes in the current indicators of β-cell damage. We proposed a novel physio-pathological pathway and shows that PCD affect not only elderly patients but also children. Here we reduced the gap between basic biomedical research, clinical practice and health decision making.
Collapse
MESH Headings
- Adolescent
- Animals
- Cell Line
- Cell Survival
- Cells, Cultured
- Child
- Child, Preschool
- Cross-Sectional Studies
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/pathology
- Humans
- Insulin-Secreting Cells/pathology
- Islet Amyloid Polypeptide/blood
- Islet Amyloid Polypeptide/metabolism
- Islet Amyloid Polypeptide/toxicity
- Islet Amyloid Polypeptide/ultrastructure
- Microscopy, Electron, Transmission
- Neurons/drug effects
- Obesity/blood
- Obesity/complications
- Obesity/pathology
- Pilot Projects
- Primary Cell Culture
- Protein Multimerization
- Protein Structure, Quaternary
- Rats
- Toxicity Tests, Acute
Collapse
Affiliation(s)
| | - Eulalia Garrido-Magaña
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eugenia Morán
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Aurora Calderón
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Karina Pasten-Hidalgo
- Instituto Nacional de Pediatría, Mexico City, Mexico
- Cátedras Conacyt, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Rosa Angélica Castillo-Rodríguez
- Instituto Nacional de Pediatría, Mexico City, Mexico
- Cátedras Conacyt, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Gerardo Rojas
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Edgar Leyva-García
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Mateo Larralde-Laborde
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | | | - Rafael Payro
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Manuel Barbosa
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | | | | | - Regina Ferrer
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Fernanda Santoscoy
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Julio Morán
- Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Jalil Villalobos-Alva
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Mario Javier Villalobos
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Perla Altamirano
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Myriam M. Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
4
|
Abstract
There is an opinion in professional literature that edge-strands in β-sheet are critical to the processes of amyloid transformation. Propagation of fibrillar forms mainly takes place on the basis of β-sheet type interactions. In many proteins, the edge strands represent only a partially matched form to the β-sheet. Therefore, the edge-strand takes slightly distorted forms. The assessment of the level of arrangement can be carried out based on studying the secondary structure as well as the structure of the hydrophobic core. For this purpose, a fuzzy oil drop model was used to determine the contribution of each fragment with a specific secondary structure to the construction of the system being the effect of a certain synergy, which results in the construction of a hydrophobic core. Studying the participation of β-sheets edge fragments in the hydrophobic core construction is the subject of the current analysis. Statuses of these edge fragments in β-sheets in ferredoxin-like folds are treated as factors that disturb the symmetry of the system.
Collapse
|
5
|
The Amyloid as a Ribbon-Like Micelle in Contrast to Spherical Micelles Represented by Globular Proteins. Molecules 2019; 24:molecules24234395. [PMID: 31816829 PMCID: PMC6930452 DOI: 10.3390/molecules24234395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/18/2023] Open
Abstract
Selected amyloid structures available in the Protein Data Bank have been subjected to a comparative analysis. Classification is based on the distribution of hydrophobicity in amyloids that differ with respect to sequence, chain length, the distribution of beta folds, protofibril structure, and the arrangement of protofibrils in each superfibril. The study set includes the following amyloids: Aβ (1-42), which is listed as Aβ (15-40) and carries the D23N mutation, and Aβ (11-42) and Aβ (1-40), both of which carry the E22Δ mutation, tau amyloid, and α-synuclein. Based on the fuzzy oil drop model (FOD), we determined that, despite their conformational diversity, all presented amyloids adopt a similar structural pattern that can be described as a ribbon-like micelle. The same model, when applied to globular proteins, results in structures referred to as "globular micelles," emerging as a result of interactions between the proteins' constituent residues and the aqueous solvent. Due to their composition, amyloids are unable to attain entropically favorable globular forms and instead attempt to limit contact between hydrophobic residues and water by producing elongated structures. Such structures typically contain quasi hydrophobic cores that stretch along the fibril's long axis. Similar properties are commonly found in ribbon-like micelles, with alternating bands of high and low hydrophobicity emerging as the fibrils increase in length. Thus, while globular proteins are generally consistent with a 3D Gaussian distribution of hydrophobicity, the distribution instead conforms to a 2D Gaussian distribution in amyloid fibrils.
Collapse
|
6
|
Directing curli polymerization with DNA origami nucleators. Nat Commun 2019; 10:1395. [PMID: 30918257 PMCID: PMC6437208 DOI: 10.1038/s41467-019-09369-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 03/07/2019] [Indexed: 01/16/2023] Open
Abstract
The physiological or pathological formation of fibrils often relies on molecular-scale nucleators that finely control the kinetics and structural features. However, mechanistic understanding of how protein nucleators mediate fibril formation in cells remains elusive. Here, we develop a CsgB-decorated DNA origami (CB-origami) to mimic protein nucleators in Escherichia coli biofilm that direct curli polymerization. We show that CB-origami directs curli subunit CsgA monomers to form oligomers and then accelerates fibril formation by increasing the proliferation rate of primary pathways. Fibrils grow either out from (departure mode) or towards the nucleators (arrival mode), implying two distinct roles of CsgB: as nucleation sites and as trap sites to capture growing nanofibrils in vicinity. Curli polymerization follows typical stop-and-go dynamics but exhibits a higher instantaneous elongation rate compared with independent fibril growth. This origami nucleator thus provides an in vitro platform for mechanistically probing molecular nucleation and controlling directional fibril polymerization for bionanotechnology.
Collapse
|
7
|
Aranda-Souza MÂ, Lorena VMBD, Correia MTDS, Pereira-Neves A, Figueiredo RCBQD. A C-type lectin from Bothrops leucurus snake venom forms amyloid-like aggregates in RPMI medium and are efficiently phagocytosed by peritoneal macrophages. Toxicon 2019; 157:93-100. [DOI: 10.1016/j.toxicon.2018.11.309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
|
8
|
Fernández-Gómez I, Sablón-Carrazana M, Bencomo-Martínez A, Domínguez G, Lara-Martínez R, Altamirano-Bustamante NF, Jiménez-García LF, Pasten-Hidalgo K, Castillo-Rodríguez RA, Altamirano P, Marrero SR, Revilla-Monsalve C, Valdés-Sosa P, Salamanca-Gómez F, Garrido-Magaña E, Rodríguez-Tanty C, Altamirano-Bustamante MM. Diabetes Drug Discovery: hIAPP 1-37 Polymorphic Amyloid Structures as Novel Therapeutic Targets. Molecules 2018; 23:molecules23030686. [PMID: 29562662 PMCID: PMC6017868 DOI: 10.3390/molecules23030686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Human islet amyloid peptide (hIAPP1–37) aggregation is an early step in Diabetes Mellitus. We aimed to evaluate a family of pharmaco-chaperones to act as modulators that provide dynamic interventions and the multi-target capacity (native state, cytotoxic oligomers, protofilaments and fibrils of hIAPP1–37) required to meet the treatment challenges of diabetes. We used a cross-functional approach that combines in silico and in vitro biochemical and biophysical methods to study the hIAPP1–37 aggregation-oligomerization process as to reveal novel potential anti-diabetic drugs. The family of pharmaco-chaperones are modulators of the oligomerization and fibre formation of hIAPP1–37. When they interact with the amino acid in the amyloid-like steric zipper zone, they inhibit and/or delay the aggregation-oligomerization pathway by binding and stabilizing several amyloid structures of hIAPP1–37. Moreover, they can protect cerebellar granule cells (CGC) from the cytotoxicity produced by the hIAPP1–37 oligomers. The modulation of proteostasis by the family of pharmaco-chaperones A–F is a promising potential approach to limit the onset and progression of diabetes and its comorbidities.
Collapse
Affiliation(s)
- Isaac Fernández-Gómez
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | | | | | | | - Reyna Lara-Martínez
- Departamento de Biología Celular, Facultad de Ciencias, UNAM, Ciudad de México 04510, Mexico.
| | | | | | - Karina Pasten-Hidalgo
- Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
- Cátedras Conacyt, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| | - Rosa Angélica Castillo-Rodríguez
- Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
- Cátedras Conacyt, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| | - Perla Altamirano
- Servicio de Medicina Nuclear, Hospital de Especialidades, CMN, La Raza, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | | | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | - Peter Valdés-Sosa
- Departamento de Neuroquímica, Centro de Neurociencias de Cuba, Habana 11600, Cuba.
| | - Fabio Salamanca-Gómez
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | - Eulalia Garrido-Magaña
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | | | - Myriam M Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| |
Collapse
|
9
|
Upadhyay A, Mishra A. Amyloids of multiple species: are they helpful in survival? Biol Rev Camb Philos Soc 2018; 93:1363-1386. [DOI: 10.1111/brv.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| |
Collapse
|
10
|
Avila-Vazquez MF, Altamirano-Bustamante NF, Altamirano-Bustamante MM. Amyloid Biomarkers in Conformational Diseases at Face Value: A Systematic Review. Molecules 2017; 23:E79. [PMID: 29286329 PMCID: PMC6017595 DOI: 10.3390/molecules23010079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Conformational diseases represent a new aspect of proteomic medicine where diagnostic and therapeutic paradigms are evolving. In this context, the early biomarkers for target cell failure (neurons, β-cells, etc.) represent a challenge to translational medicine and play a multidimensional role as biomarkers and potential therapeutic targets. This systematic review, which follows the PICO and Prisma methods, analyses this new-fangled multidimensionality, its strengths and limitations, and presents the future possibilities it opens up. The nuclear diagnosis methods are immunoassays: ELISA, immunodot, western blot, etc., while the therapeutic approach is focused on pharmaco- and molecular chaperones.
Collapse
Affiliation(s)
- Maria Fernanda Avila-Vazquez
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, IMSS, Mexico City 06720, Mexico.
- Health Department, Universidad Iberoamericana, Mexico City 01219, Mexico.
| | | | | |
Collapse
|
11
|
Leyva-García E, Lara-Martínez R, Morán-Zanabria L, Revilla-Monsalve C, Jiménez-García LF, Oviedo N, Murata C, Garrido-Magaña E, Altamirano-Bustamante NF, Altamirano-Bustamante MM. Novel insight into streptozotocin-induced diabetic rats from the protein misfolding perspective. Sci Rep 2017; 7:11552. [PMID: 28912603 PMCID: PMC5599686 DOI: 10.1038/s41598-017-11776-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022] Open
Abstract
Protein folding is a process of self-assembly defined by the sequence of the amino acids of the protein involved. Additionally, proteins tend to unfold, misfold and aggregate due to both intrinsic and extrinsic causes. Human islet amyloid polypeptide (hIAPP) aggregation is an early step in diabetes mellitus. However, the aggregation of rat IAPP (rIAPP) remains an open question. Adult female Sprague-Dawley rats weighing 150-250 g were divided into two groups. The experimental group (streptozotocin [STZ]) (n = 21) received an intraperitoneal injection of a single dose of 40 mg/kg STZ. We used the mouse anti-IAPP antibody and the anti-amyloid oligomer antibody to study the temporal course of rIAPP oligomerization during STZ-induced diabetes using a wide array of methods, strategies and ideas derived from biochemistry, cell biology, and proteomic medicine. Here, we demonstrated the tendency of rIAPP to aggregate and trigger cooperative processes of self-association or hetero-assembly that lead to the formation of amyloid oligomers (trimers and hexamers). Our results are the first to demonstrate the role of rIAPP amyloid oligomers in the development of STZ-induced diabetes in rats. The IAPP amyloid oligomers are biomarkers of the onset and progression of diabetes and could play a role as therapeutic targets.
Collapse
Affiliation(s)
- Edgar Leyva-García
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | | - Liborio Morán-Zanabria
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | | - Norma Oviedo
- Unidad de Investigación en Inmunología e Infectología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | | - Eulalia Garrido-Magaña
- Servicio de Endocrinología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Mexico city, Mexico
| | | | - Myriam M Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico.
| |
Collapse
|