1
|
Chen H, Wang X, Cheng H, Deng Y, Chen J, Wang B. CircRNA circRREB1 promotes tumorigenesis and progression of breast cancer by activating Erk1/2 signaling through interacting with GNB4. Heliyon 2024; 10:e28785. [PMID: 38617926 PMCID: PMC11015410 DOI: 10.1016/j.heliyon.2024.e28785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
Current investigations have illuminated the essential roles played by circular RNAs (circRNAs) in driving breast cancer (BC) tumorigenesis. However, the functional implications and molecular underpinnings of most circRNAs in BC are not well characterized. Here, Circular RNA (circRNA) expression profiles were analyzed in four surgically resected BC cases along with adjacent non-cancerous tissues applying RNA microarray analysis. The levels and prognostic implications of circRREB1 in BC were subjected to quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). Experimental manipulation of circRREB1 levels in both in vivo and in vitro settings further delineated its role in BC cell growth, invasion, and metastasis. The mechanical verification of circRREB1's interaction with GNB4 was established through RNA pull-down, mass spectrometry, Western blot analysis, RNA immunoprecipitation assays (RIP), fluorescence ISH (FISH), and rescue experiments. We found that circRREB1 exhibited significant upregulation in BC tissues and cells, implicating its association with an unfavorable prognosis in BC patients. CircRREB1 knockdown elicited anti-proliferative, anti-migratory, anti-invasive, and pro-apoptotic effects in BC cells, whereas its upregulation exerted opposing influences. Follow-up mechanistic examinations suggested that circRREB1 might interact with GNB4 directly, inducing the activation of Erk1/2 signaling and driving BC progression. Our findings collectively indicate that the interplay of circRREB1 with GNB4 promotes Erk1/2 signaling, thereby fostering BC progression, and positioning circRREB1 as a candidate therapeutic target for intervention in BC.
Collapse
Affiliation(s)
- Hong Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Xiaosong Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Hang Cheng
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Yumei Deng
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 400054, China
| |
Collapse
|
2
|
Retention of ERK in the cytoplasm mediates the pluripotency of embryonic stem cells. Stem Cell Reports 2022; 18:305-318. [PMID: 36563690 PMCID: PMC9860118 DOI: 10.1016/j.stemcr.2022.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022] Open
Abstract
The dynamic subcellular localization of ERK1/2 plays an important role in regulating cell fate. Differentiation of mouse embryonic stem cells (mESCs) involves inductive stimulation of ERK1/2, and therefore, inhibitors of the ERK cascade are used to maintain pluripotency. Interestingly, we found that in pluripotent mESCs, ERK1/2 do not translocate to the nucleus either before or after stimulation. This inhibition of nuclear translocation may be dependent on a lack of stimulated ERK1/2 interaction with importin7 rather than a lack of ERK1/2 phosphorylation activating translocation. At late stages of naive-to-primed transition, the action of the translocating machinery is restored, leading to elevation in ERK1/2-importin7 interaction and their nuclear translocation. Importantly, forcing ERK2 into the naive cells' nuclei accelerates their early differentiation, while prevention of the translocation restores stem cells' pluripotency. These results indicate that prevention of nuclear ERK1/2 translocation serves as a safety mechanism for keeping pluripotency of mESCs.
Collapse
|
3
|
Devost D, Zingg HH, Hébert TE. The MAP kinase ERK5/MAPK7 is a downstream effector of oxytocin signaling in myometrial cells. Cell Signal 2021; 90:110211. [PMID: 34902542 DOI: 10.1016/j.cellsig.2021.110211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022]
Abstract
The hormone oxytocin (OT) has pleiotropic activities both in the central nervous system as well as in peripheral tissues, including uterotonic effects on the myometrium during parturition. OT effects are mediated by a single transmembrane receptor, belonging to the GPCR (G protein-coupled receptor) superfamily and coupled primarily to Gq- and Gi-containing heterotrimeric G proteins. Upon receptor stimulation, one well-studied downstream effect is activation of the ERK1/2 MAP (mitogen-activated protein) kinase, and studies have shown that induction of COX-2 by OT in the myometrium required ERK1/2 activity. Many studies investigating the role of ERK1/2 in myometrial tissue were based on the use of chemical inhibitors that, to varying degrees, also inhibited ERK5/MAPK7. Here we report that OT activates ERK5 in a human myometrial cell line in a dose- and time-dependent manner through the activation of Gi/o heterotrimers. Using complementary approaches, we demonstrate that OT-induced COX-2 induction and the concomitant release of PGF2α into the media are primarily ERK5-dependent and to a much lesser extent ERK1/2-dependent. Moreover, in contrast to ERK1/2 activation, ERK5 activation is downstream of Gi/o activation. Here, we also found that ERK5 impacted both basal and to a lesser extent, OT-mediated myometrial cell contraction in vitro. Finally, tracking both ERK1/2 and ERK5 activity during different stages of gestation in rat myometrium, we showed that they followed distinct patterns starting at the onset of labor corresponding to the highest COX-2 expression levels. Overall, our results reveal an important, hitherto unrecognized role for ERK5 in myometrial cell contraction involving induction of COX-2. This novel pathway is likely to play an important role in supporting uterine contractions during parturition.
Collapse
Affiliation(s)
- Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec H3G 1Y6, Canada.
| | - Hans H Zingg
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec H3G 1Y6, Canada.
| |
Collapse
|
4
|
Dual specific phosphatases (DUSPs) in cardiac hypertrophy and failure. Cell Signal 2021; 84:110033. [PMID: 33933582 DOI: 10.1016/j.cellsig.2021.110033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Pressure overload and other stress stimuli elicit a host of adaptive and maladaptive signaling cascades that eventually lead to cardiac hypertrophy and heart failure. Among those, the mitogen-activated protein kinase (MAPK) signaling pathway has been shown to play a prominent role. The dual specificity phosphatases (DUSPs), also known as MAPK specific phosphatases (MKPs), that can dephosphorylate the MAPKs and inactivate them are gaining increasing attention as potential drug targets. Here we try to review recent advancements in understanding the roles of the different DUSPs, and the pathways that they regulate in cardiac remodeling. We focus on the regulation of three main MAPK branches - the p38 kinases, the c-Jun-N-terminal kinases (JNKs) and the extracellular signal-regulated kinases (ERK) by various DUSPs and try to examine their roles.
Collapse
|
5
|
Bustos G, Ahumada-Castro U, Silva-Pavez E, Puebla A, Lovy A, Cesar Cardenas J. The ER-mitochondria Ca 2+ signaling in cancer progression: Fueling the monster. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:49-121. [PMID: 34392932 DOI: 10.1016/bs.ircmb.2021.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide. All major tumor suppressors and oncogenes are now recognized to have fundamental connections with metabolic pathways. A hallmark feature of cancer cells is a reprogramming of their metabolism even when nutrients are available. Increasing evidence indicates that most cancer cells rely on mitochondrial metabolism to sustain their energetic and biosynthetic demands. Mitochondria are functionally and physically coupled to the endoplasmic reticulum (ER), the major calcium (Ca2+) storage organelle in mammalian cells, through special domains known as mitochondria-ER contact sites (MERCS). In this domain, the release of Ca2+ from the ER is mainly regulated by inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), a family of Ca2+ release channels activated by the ligand IP3. IP3R mediated Ca2+ release is transferred to mitochondria through the mitochondrial Ca2+ uniporter (MCU). Once in the mitochondrial matrix, Ca2+ activates several proteins that stimulate mitochondrial performance. The role of IP3R and MCU in cancer, as well as the other proteins that enable the Ca2+ communication between these two organelles is just beginning to be understood. Here, we describe the function of the main players of the ER mitochondrial Ca2+ communication and discuss how this particular signal may contribute to the rise and development of cancer traits.
Collapse
Affiliation(s)
- Galdo Bustos
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Ulises Ahumada-Castro
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Eduardo Silva-Pavez
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Andrea Puebla
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Alenka Lovy
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, United States.
| | - J Cesar Cardenas
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, United States; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
6
|
Bernardo A, Plumitallo C, De Nuccio C, Visentin S, Minghetti L. Curcumin promotes oligodendrocyte differentiation and their protection against TNF-α through the activation of the nuclear receptor PPAR-γ. Sci Rep 2021; 11:4952. [PMID: 33654147 PMCID: PMC7925682 DOI: 10.1038/s41598-021-83938-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
Curcumin is a compound found in the rhizome of Curcuma longa (turmeric) with a large repertoire of pharmacological properties, including anti-inflammatory and neuroprotective activities. The current study aims to assess the effects of this natural compound on oligodendrocyte progenitor (OP) differentiation, particularly in inflammatory conditions. We found that curcumin can promote the differentiation of OPs and to counteract the maturation arrest of OPs induced by TNF-α by a mechanism involving PPAR-γ (peroxisome proliferator activated receptor), a ligand-activated transcription factor with neuroprotective and anti-inflammatory capabilities. Furthermore, curcumin induces the phosphorylation of the protein kinase ERK1/2 known to regulate the transition from OPs to immature oligodendrocytes (OLs), by a mechanism only partially dependent on PPAR-γ. Curcumin is also able to raise the levels of the co-factor PGC1-α and of the cytochrome c oxidase core protein COX1, even when OPs are exposed to TNF-α, through a PPAR-γ-mediated mechanism, in line with the known ability of PPAR-γ to promote mitochondrial integrity and functions, which are crucial for OL differentiation to occur. Altogether, this study provides evidence for a further mechanism of action of curcumin besides its well-known anti-inflammatory properties and supports the suggested therapeutic potential of this nutraceutical in demyelinating diseases.
Collapse
Affiliation(s)
- Antonietta Bernardo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy. .,National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Cristina Plumitallo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Chiara De Nuccio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.,Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Sergio Visentin
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.,National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Luisa Minghetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.,Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
7
|
Deng M, Liu B, Zhang Z, Chen Y, Wang Y, Wang X, Lv Q, Yang X, Hou K, Che X, Qu X, Liu Y, Zhang Y, Hu X. Knockdown of G-protein-signaling modulator 2 promotes metastasis of non-small-cell lung cancer by inducing the expression of Snail. Cancer Sci 2020; 111:3210-3221. [PMID: 32519357 PMCID: PMC7469834 DOI: 10.1111/cas.14519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022] Open
Abstract
Non‐small‐cell lung cancer (NSCLC) is the leading global cause of cancer‐related death. Due to the lack of reliable diagnostic or prognostic biomarkers, the prognosis of NSCLC remains poor. Consequently, there is an urgent need to explore the mechanisms underlying this condition in order to identify effective biomarkers. G‐protein‐signaling modulator 2 (GPSM2) is widely recognized as a determinant of mitotic spindle orientation. However, its role in cancer, especially NSCLC, remains uncertain. In this study, we found that GPSM2 was downregulated in NSCLC tissues and was correlated with a poor prognosis. Furthermore, the knockdown of GPSM2 promoted NSCLC cell metastasis in vitro and in vivo and accelerated the process of epithelial‐mesenchymal transition (EMT). Mechanistically, we showed that silencing GPSM2 induced cell metastasis and EMT through the ERK/glycogen synthase kinase‐3β/Snail pathway. These results confirm that GPSM2 plays an important role in NSCLC. Moreover, GPSM2, as an independent prognostic factor, could be a potential prognostic biomarker and drug target for NSCLC.
Collapse
Affiliation(s)
- Mingming Deng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Bofang Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Chen
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Yizhe Wang
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Ximing Wang
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Qingjie Lv
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Mutations That Confer Drug-Resistance, Oncogenicity and Intrinsic Activity on the ERK MAP Kinases-Current State of the Art. Cells 2020; 9:cells9010129. [PMID: 31935908 PMCID: PMC7016714 DOI: 10.3390/cells9010129] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Unique characteristics distinguish extracellular signal-regulated kinases (Erks) from other eukaryotic protein kinases (ePKs). Unlike most ePKs, Erks do not autoactivate and they manifest no basal activity; they become catalysts only when dually phosphorylated on neighboring Thr and Tyr residues and they possess unique structural motifs. Erks function as the sole targets of the receptor tyrosine kinases (RTKs)-Ras-Raf-MEK signaling cascade, which controls numerous physiological processes and is mutated in most cancers. Erks are therefore the executers of the pathway’s biology and pathology. As oncogenic mutations have not been identified in Erks themselves, combined with the tight regulation of their activity, Erks have been considered immune against mutations that would render them intrinsically active. Nevertheless, several such mutations have been generated on the basis of structure-function analysis, understanding of ePK evolution and, mostly, via genetic screens in lower eukaryotes. One of the mutations conferred oncogenic properties on Erk1. The number of interesting mutations in Erks has dramatically increased following the development of Erk-specific pharmacological inhibitors and identification of mutations that cause resistance to these compounds. Several mutations have been recently identified in cancer patients. Here we summarize the mutations identified in Erks so far, describe their properties and discuss their possible mechanism of action.
Collapse
|
9
|
Liu X, Lin L, Li Q, Ni Y, Zhang C, Qin S, Wei J. ERK1/2 communicates GPCR and EGFR signaling pathways to promote CTGF-mediated hypertrophic cardiomyopathy upon Ang-II stimulation. BMC Mol Cell Biol 2019; 20:14. [PMID: 31200637 PMCID: PMC6570861 DOI: 10.1186/s12860-019-0202-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 06/02/2019] [Indexed: 12/12/2022] Open
Abstract
Background Hypertrophic cardiomyopathy occurs along with pathological phenomena such as cardiac hypertrophy, myocardial fibrosis and cardiomyocyte activity. However, few of the specific molecular mechanisms underlying this pathological condition have been mentioned. Methods All target proteins and markers expression in the study was verified by PCR and western bloting. H9c2 cell morphology and behavior were analyzed using immunofluorescent and proliferation assays, respectively. And, the CTGF protein secreted in cell culture medium was detected by ELISA. Results We found that high expression of CTGF and low expression of EGFR were regulated by ERK1/2 signaling pathway during the cardiac hypertrophy induced by Ang-II stimulation. CTGF interacted with EGFR, and the interaction is reduced with the stimulation of Ang-II. ERK1/2 serves as the center of signal control during the cardiac hypertrophy. Conclusion The ERK1/2 cooperates with GPCR and EGFR signaling, and promotes the occurrence and development of cardiac hypertrophy by regulating the expression and binding states of CTGF and EGFR. The study revealed a regulation model based on ERK1/2, suggesting that ERK1/2 signaling pathway may be an important control link for mitigation of hypertrophic cardiomyopathy treatment.
Collapse
Affiliation(s)
- Xin Liu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, Fifth West Road, Xi'an, 710004, Shaanxi, China
| | - Lin Lin
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, Fifth West Road, Xi'an, 710004, Shaanxi, China
| | - Qing Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, Fifth West Road, Xi'an, 710004, Shaanxi, China
| | - Yajuan Ni
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, Fifth West Road, Xi'an, 710004, Shaanxi, China
| | - Chaoying Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, Fifth West Road, Xi'an, 710004, Shaanxi, China
| | - Shuguang Qin
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, Fifth West Road, Xi'an, 710004, Shaanxi, China
| | - Jin Wei
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, Fifth West Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|