1
|
Prouse T, Majumder S, Majumder R. Functions of TAM Receptors and Ligands Protein S and Gas6 in Atherosclerosis and Cardiovascular Disease. Int J Mol Sci 2024; 25:12736. [PMID: 39684449 DOI: 10.3390/ijms252312736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Atherosclerosis and cardiovascular disease are associated with high morbidity and mortality in industrialized nations. The Tyro3, Axl, and Mer (TAM) family of receptor tyrosine kinases is involved in the amplification or resolution of atherosclerosis pathology and other cardiovascular pathology. The ligands of these receptors, Protein S (PS) and growth arrest specific protein 6 (Gas6), are essential for TAM receptor functions in the amplification and resolution of atherosclerosis. The Axl-Gas6 interaction has various effects on cardiovascular disease. Mer and PS dampen inflammation, thereby protecting against atherosclerosis progression. Tyro3, the least studied TAM receptor in cardiovascular disease, appears to protect against fibrosis in post-myocardial infarction injury. Ultimately, PS, Gas6, and TAM receptors present an exciting avenue of potential therapeutic targets against inflammation associated with atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Teagan Prouse
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Rinku Majumder
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Yan L, Chen C, Wang L, Hong H, Wu C, Huang J, Jiang J, Chen J, Xu G, Cui Z. Analysis of gene expression in microglial apoptotic cell clearance following spinal cord injury based on machine learning algorithms. Exp Ther Med 2024; 28:292. [PMID: 38827468 PMCID: PMC11140288 DOI: 10.3892/etm.2024.12581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/17/2024] [Indexed: 06/04/2024] Open
Abstract
Spinal cord injury (SCI) is a severe neurological complication following spinal fracture, which has long posed a challenge for clinicians. Microglia play a dual role in the pathophysiological process after SCI, both beneficial and detrimental. The underlying mechanisms of microglial actions following SCI require further exploration. The present study combined three different machine learning algorithms, namely weighted gene co-expression network analysis, random forest analysis and least absolute shrinkage and selection operator analysis, to screen for differentially expressed genes in the GSE96055 microglia dataset after SCI. It then used protein-protein interaction networks and gene set enrichment analysis with single genes to investigate the key genes and signaling pathways involved in microglial function following SCI. The results indicated that microglia not only participate in neuroinflammation but also serve a significant role in the clearance mechanism of apoptotic cells following SCI. Notably, bioinformatics analysis and lipopolysaccharide + UNC569 (a MerTK-specific inhibitor) stimulation of BV2 cell experiments showed that the expression levels of Anxa2, Myo1e and Spp1 in microglia were significantly upregulated following SCI, thus potentially involved in regulating the clearance mechanism of apoptotic cells. The present study suggested that Anxa2, Myo1e and Spp1 may serve as potential targets for the future treatment of SCI and provided a theoretical basis for the development of new methods and drugs for treating SCI.
Collapse
Affiliation(s)
- Lei Yan
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Chu Chen
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Lingling Wang
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Hongxiang Hong
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Chunshuai Wu
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Jiayi Huang
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Jiawei Jiang
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Jiajia Chen
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Guanhua Xu
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Zhiming Cui
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| |
Collapse
|
3
|
Cheng M, Chen S, Li K, Wang G, Xiong G, Ling R, Zhang C, Zhang Z, Han H, Chen Z, Wang X, Liang Y, Tian G, Zhou R, Zhu Y, Ma J, Liu J, Lin S, Xu H, Chen D, Li Y, Peng L. CD276-dependent efferocytosis by tumor-associated macrophages promotes immune evasion in bladder cancer. Nat Commun 2024; 15:2818. [PMID: 38561369 PMCID: PMC10985117 DOI: 10.1038/s41467-024-46735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Interplay between innate and adaptive immune cells is important for the antitumor immune response. However, the tumor microenvironment may turn immune suppressive, and tumor associated macrophages are playing a role in this transition. Here, we show that CD276, expressed on tumor-associated macrophages (TAM), play a role in diminishing the immune response against tumors. Using a model of tumors induced by N-butyl-N-(4-hydroxybutyl) nitrosamine in BLCA male mice we show that genetic ablation of CD276 in TAMs blocks efferocytosis and enhances the expression of the major histocompatibility complex class II (MHCII) of TAMs. This in turn increases CD4 + and cytotoxic CD8 + T cell infiltration of the tumor. Combined single cell RNA sequencing and functional experiments reveal that CD276 activates the lysosomal signaling pathway and the transcription factor JUN to regulate the expression of AXL and MerTK, resulting in enhanced efferocytosis in TAMs. Proving the principle, we show that simultaneous blockade of CD276 and PD-1 restrain tumor growth better than any of the components as a single intervention. Taken together, our study supports a role for CD276 in efferocytosis by TAMs, which is potentially targetable for combination immune therapy.
Collapse
Affiliation(s)
- Maosheng Cheng
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang Chen
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Kang Li
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ganping Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gan Xiong
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518057, China
| | - Caihua Zhang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhihui Zhang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Han
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi Chen
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaochen Wang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Liang
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Guoli Tian
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ruoxing Zhou
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Zhu
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jieyi Ma
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiahong Liu
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, NO.8 the east street, Fengtai District, Beijing, 100071, China
| | - Shuibin Lin
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Demeng Chen
- Department of Medical Oncology; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yang Li
- Department of Genetics, School of Life Sciences, Anhui Medical University, Hefei, 230031, China.
| | - Liang Peng
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, NO.8 the east street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
4
|
Guan X, Wang Y, Li W, Mu W, Tang Y, Wang M, Seyam A, Yang Y, Pan L, Hou T. The Role of Macrophage Efferocytosis in the Pathogenesis of Apical Periodontitis. Int J Mol Sci 2024; 25:3854. [PMID: 38612664 PMCID: PMC11011522 DOI: 10.3390/ijms25073854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Macrophages (Mφs) play a crucial role in the homeostasis of the periapical immune micro-environment caused by bacterial infection. Mφ efferocytosis has been demonstrated to promote the resolution of multiple infected diseases via accelerating Mφ polarization into M2 type. However, the Mφ efferocytosis-apical periodontitis (AP) relationship has not been elucidated yet. This study aimed to explore the role of Mφ efferocytosis in the pathogenesis of AP. Clinical specimens were collected to determine the involvement of Mφ efferocytosis in the periapical region via immunohistochemical and immunofluorescence staining. For a further understanding of the moderator effect of Mφ efferocytosis in the pathogenesis of AP, both an in vitro AP model and in vivo AP model were treated with ARA290, a Mφ efferocytosis agonist. Histological staining, micro-ct, flow cytometry, RT-PCR and Western blot analysis were performed to detect the inflammatory status, alveolar bone loss and related markers in AP models. The data showed that Mφ efferocytosis is observed in the periapical tissues and enhancing the Mφ efferocytosis ability could effectively promote AP resolution via facilitating M2 Mφ polarization. Collectively, our study demonstrates the functional importance of Mφ efferocytosis in AP pathology and highlights that accelerating Mφ efferocytosis via ARA290 could serve as an adjuvant therapeutic strategy for AP.
Collapse
Affiliation(s)
- Xiaoyue Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China (A.S.)
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Cariology and Endodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Yuting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China (A.S.)
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Cariology and Endodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Wenlan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China (A.S.)
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Cariology and Endodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Wenli Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China (A.S.)
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Cariology and Endodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Yifei Tang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China (A.S.)
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Cariology and Endodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Mingfei Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China (A.S.)
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Cariology and Endodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Abdelrahman Seyam
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China (A.S.)
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Cariology and Endodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Yao Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China (A.S.)
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Cariology and Endodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Lifei Pan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China (A.S.)
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Cariology and Endodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Tiezhou Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China (A.S.)
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Cariology and Endodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
5
|
Chen CC, Chen CY, Yeh CT, Liu YT, Leu YL, Chuang WY, Shih YH, Chou LF, Shieh TM, Wang TH. Corylin Attenuates CCl 4-Induced Liver Fibrosis in Mice by Regulating the GAS6/AXL Signaling Pathway in Hepatic Stellate Cells. Int J Mol Sci 2023; 24:16936. [PMID: 38069259 PMCID: PMC10707553 DOI: 10.3390/ijms242316936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Liver fibrosis is reversible when treated in its early stages and when liver inflammatory factors are inhibited. Limited studies have investigated the therapeutic effects of corylin, a flavonoid extracted from Psoralea corylifolia L. (Fabaceae), on liver fibrosis. Therefore, we evaluated the anti-inflammatory activity of corylin and investigated its efficacy and mechanism of action in ameliorating liver fibrosis. Corylin significantly inhibited inflammatory responses by inhibiting the activation of mitogen-activated protein kinase signaling pathways and the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha in human THP-1 and mouse RAW264.7 macrophages. Furthermore, corylin inhibited the expression of growth arrest-specific gene 6 in human hepatic stellate cells (HSCs) and the activation of the downstream phosphoinositide 3-kinase/protein kinase B pathway. This inhibited the activation of HSCs and the expression of extracellular matrix proteins, including α-smooth muscle actin and type I collagen. Additionally, corylin induced caspase 9 and caspase 3 activation, which promoted apoptosis in HSCs. Moreover, in vivo experiments confirmed the regulatory effects of corylin on these proteins, and corylin alleviated the symptoms of carbon tetrachloride-induced liver fibrosis in mice. These findings revealed that corylin has anti-inflammatory activity and inhibits HSC activation; thus, it presents as a potential adjuvant in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Chin-Chuan Chen
- Biobank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-T.L.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan
| | - Chi-Yuan Chen
- Biobank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-T.L.); (Y.-L.L.)
- Graduate Institute of Health Industry and Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Yi-Tsen Liu
- Biobank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-T.L.); (Y.-L.L.)
| | - Yann-Lii Leu
- Biobank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-T.L.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Tao-Yuan 33303, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan;
| | - Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Tong-Hong Wang
- Biobank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-T.L.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan
- Graduate Institute of Health Industry and Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| |
Collapse
|
6
|
Han Y, Li G, Zhang Z, Zhang X, Zhao B, Yang H. Axl promotes intracranial aneurysm rupture by regulating macrophage polarization toward M1 via STAT1/HIF-1α. Front Immunol 2023; 14:1158758. [PMID: 37223093 PMCID: PMC10200875 DOI: 10.3389/fimmu.2023.1158758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023] Open
Abstract
Background Macrophage infiltration and polarization are crucial for the pathogenesis of intracranial aneurysm (IA) rupture. Axl, a receptor tyrosine kinase, is involved in inflammation and efferocytosis in multiple organs. Upregulated soluble Axl in cerebrospinal fluid (CSF) and plasma is correlated with intracranial aneurysm rupture. This study aimed to investigate the role of Axl in IA rupture and macrophage polarization. Methods Male C57BL/6J mice were used to induce IA. The level of Axl from control vessels and unruptured and ruptured IA samples was detected. In addition, the relationship between Axl and macrophages was confirmed. The pathway of Axl-mediated macrophage polarization was explored after IA induction in vivo and in bone marrow-derived macrophages (BMDMs) stimulated by LPS/IFN-γ in vitro. The animals were randomized into three groups and treated intraperitoneally with the vehicle, selective AXL antagonist R428, and recombinant mouse growth arrest-specific 6 (rmGas6) for 21 consecutive days. Then, we evaluated the influence of Axl on IA rupture by administrating R428 to inhibit or rmGas6 to activate the Axl receptor in vivo. Results Compared with that in normal vessels, Axl expression was significantly upregulated in unruptured IA samples. The ruptured IA tissue exhibited significantly higher expression of Axl than the unruptured IA tissue. Axl and F4/80 were coexpressed in IA tissue and LPS/IFN-γ-stimulated BMDMs. R428 treatment significantly reduced the rate of M1-like macrophage infiltration and IA rupture. In contrast, rmGas6 treatment promoted M1 macrophage infiltration and IA rupture. Mechanistically, R428 inhibited the phosphorylation of Axl and STAT1 and the expression of hypoxia-inducible factor-1α (HIF-1α) and decreased the levels of IL-1β, NOS2, and MMP9 in LPS/IFN-γ-stimulated BMDMs. rmGas6 promoted the phosphorylation of Axl and STAT1 and the expression of HIF-1α. In addition, STAT1 knockdown abolished Axl-mediated M1 macrophage polarization. Conclusion The inhibition of Axl reduced macrophage polarization toward the M1 phenotype via the STAT1/HIF-1α signaling pathway and prevented IA rupture in mice. This finding suggests that pharmacological inhibition of Axl might be used to prevent the progression and rupture of IA.
Collapse
Affiliation(s)
- Yongquan Han
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gaozhi Li
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zeyu Zhang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Yang
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Kostecki KL, Iida M, Wiley AL, Kimani S, Mehall B, Tetreault K, Alexandridis R, Yu M, Hong S, Salgia R, Bruce JY, Birge RB, Harari P, Wheeler DL. Dual Axl/MerTK inhibitor INCB081776 creates a proinflammatory tumor immune microenvironment and enhances anti-PDL1 efficacy in head and neck cancer. Head Neck 2023; 45:1255-1271. [PMID: 36939040 PMCID: PMC10079616 DOI: 10.1002/hed.27340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND The tyrosine kinase receptors Axl and MerTK are highly overexpressed in head and neck cancer (HNC) cells, where they are critical drivers of survival, proliferation, metastasis, and therapeutic resistance. METHODS We investigated the role of Axl and MerTK in creating an immunologically "cold" tumor immune microenvironment (TIME) by targeting both receptors simultaneously with a small molecule inhibitor of Axl and MerTK (INCB081776). Effects of INCB081776 and/or anti-PDL1 on mouse oral cancer (MOC) cell growth and on the TIME were evaluated. RESULTS Targeting Axl and MerTK can reduce M2 and induce M1 macrophage polarization. In vivo, INCB081776 treatment alone or with anti-PDL1 appears to slow MOC tumor growth, increase proinflammatory immune infiltration, and decrease anti-inflammatory immune infiltration. CONCLUSIONS This data indicates that simultaneous targeting of Axl and MerTK with INCB081776, either alone or in combination with anti-PDL1, slows tumor growth and creates a proinflammatory TIME in mouse models of HNC.
Collapse
Affiliation(s)
- Kourtney L Kostecki
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Anne L Wiley
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Stanley Kimani
- Rutgers Biomedical Health and Sciences, Rutgers University, Newark, NJ, USA
| | - Bridget Mehall
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kaitlin Tetreault
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Roxana Alexandridis
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Menggang Yu
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, University of Wisconsin School of Pharmacy, Madison, WI, USA
- Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul, Korea
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - Justine Y Bruce
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Raymond B Birge
- Rutgers Biomedical Health and Sciences, Rutgers University, Newark, NJ, USA
| | - Paul Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
8
|
Chai AWY, Yee PS, Cheong SC. Rational Combinations of Targeted Therapy and Immune Checkpoint Inhibitors in Head and Neck Cancers. Front Oncol 2022; 12:837835. [PMID: 35372020 PMCID: PMC8968950 DOI: 10.3389/fonc.2022.837835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy, especially the immune checkpoint inhibitors (ICIs) such as the pembrolizumab and nivolumab have contributed to significant improvements in treatment outcomes and survival of head and neck cancer (HNC) patients. Still, only a subset of patients benefits from ICIs and hence the race is on to identify combination therapies that could improve response rates. Increasingly, genetic alterations that occur within cancer cells have been shown to modulate the tumor microenvironment resulting in immune evasion, and these have led to the emergence of trials that rationalize a combination of targeted therapy with immunotherapy. In this review, we aim to provide an overview of the biological rationale and current strategies of combining targeted therapy with the approved ICIs in HNC. We summarize the ongoing combinatorial clinical trials and discuss emerging immunomodulatory targets. We also discuss the challenges and gaps that have yet to be addressed, as well as future perspectives in combining these different drug classes.
Collapse
Affiliation(s)
- Annie Wai Yeeng Chai
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Pei San Yee
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Sok Ching Cheong
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Lin J, Xu A, Jin J, Zhang M, Lou J, Qian C, Zhu J, Wang Y, Yang Z, Li X, Yu W, Liu B, Tao H. MerTK-mediated efferocytosis promotes immune tolerance and tumor progression in osteosarcoma through enhancing M2 polarization and PD-L1 expression. Oncoimmunology 2022; 11:2024941. [PMID: 35036076 PMCID: PMC8757471 DOI: 10.1080/2162402x.2021.2024941] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The poor progress of immunotherapy on osteosarcoma patients requires deeper delineation of immune tolerance mechanisms in the osteosarcoma microenvironment and a new therapeutic strategy. Clearance of apoptotic cells by phagocytes, a process termed “efferocytosis,” is ubiquitous in tumors and mediates the suppression of innate immune inflammatory response. Considering the massive infiltrated macrophages in osteosarcoma, efferocytosis probably serves as a potential target, but is rarely studied in osteosarcoma. Here, we verified M2 polarization and PD-L1 expression of macrophages following efferocytosis. Pharmacological inhibition and genetic knockdown were used to explore the underlying pathway. Moreover, tumor progression and immune landscape were evaluated following inhibition of efferocytosis in osteosarcoma model. Our study indicated that efferocytosis promoted PD-L1 expression and M2 polarization of macrophages. Ëfferocytosis was mediated by MerTK receptor in osteosarcoma and regulated the phenotypes of macrophages through the p38/STAT3 pathway. By establishing the murine osteosarcoma model, we emphasized that inhibition of MerTK suppressed tumor growth and enhanced the T cell cytotoxic function by increasing the infiltration of CD8+ T cells and decreasing their exhaustion. Our findings demonstrate that MerTK-mediated efferocytosis promotes osteosarcoma progression by enhancing M2 polarization of macrophages and PD-L1-induced immune tolerance, which were regulated through the p38/STAT3 pathway.
Collapse
Affiliation(s)
- Jinti Lin
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Ankai Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Jiakang Jin
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Man Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Jianan Lou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Chao Qian
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Jian Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Yitian Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Zhengming Yang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Xiumao Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Wei Yu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Bing Liu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Huimin Tao
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| |
Collapse
|