1
|
Kukla-Bartoszek M, Piechota M, Suski M, Hajto J, Borczyk M, Basta-Kaim A, Głombik K. Integrated Profiling Identifies Long-Term Molecular Consequences of Prenatal Dexamethasone Treatment in the Rat Brain-Potential Triggers of Depressive Phenotype and Cognitive Impairment. Mol Neurobiol 2024:10.1007/s12035-024-04586-7. [PMID: 39528842 DOI: 10.1007/s12035-024-04586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Prenatal excess of glucocorticoids (GCs) is considered to be one of the highly impacting factors contributing to depression development. Although GCs are crucial for normal fetal development and their administration (mainly dexamethasone, DEX) is a life-saving procedure for those at risk of preterm delivery, exposure to excess levels of GCs during pregnancy can yield detrimental consequences. Therefore, we aimed to systematically investigate the brain molecular alterations triggered by prenatal DEX administration. We used a rat model of depression based on prenatal exposure to DEX and performed integrative multi-level methylomic, transcriptomic, and proteomic analyses of adult rats' brains (i.e., frontal cortex (FCx) and hippocampus (Hp)) to identify the outcomes of DEX action. Each of the investigated levels was significantly affected by DEX in the long-term manner. Particularly, we found 200 CpG islands to be differentially methylated in the FCx and 200 in the Hp of prenatally DEX-treated rats. Global transcriptomic analysis uncovered differential expression of transcripts mostly in FCx (271) and 1 in Hp, while proteomic study identified 146 differentially expressed proteins in FCx and 123 in Hp. Among the identified enriched molecular networks, we found altered pathways involved in synaptic plasticity (i.e., cAMP, calcium, and Wnt signaling pathways or tight junctions and adhesion molecules), which may contribute to cognitive impairment, observed in DEX-treated animals. Moreover, in the FCx, DEX administration in the prenatal period downregulates the expression of ribosome protein genes associated both with large and small ribosomal subunit assembly which can lead to a global decrease in translation and protein synthesis processes and, indirectly, alterations in the neurotransmission process.
Collapse
Affiliation(s)
- Magdalena Kukla-Bartoszek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland
| | - Marcin Piechota
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, Faculty of Medicine, Grzegórzecka 16, 31-531, Kraków, Poland
- Centre for the Development of Therapies for Civilization and Age-Related Diseases CDT-CARD, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, Poland
| | - Jacek Hajto
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland
| | - Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
2
|
Gupta A, Agarwal V. Inflammation as a shared mechanism of chronic stress related disorders with potential novel therapeutic targets. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8383-8394. [PMID: 38850304 DOI: 10.1007/s00210-024-03205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Stress is a subjective experience that varies across individuals depending on their sensitivity, resilience, and length of exposure to stressors. Stress may be categorised as acute (positive stress) or chronic (negative stress). Acute stress is advantageous for the human body, but chronic stress results in changes in cardiovascular, neuroendocrine, autonomic, and immunological functions, eventually causing different illnesses. The specific process relating stress to chronic stress associated diseases is still a topic of continuing debate. Inflammation has been recognised as a new and fascinating physiological mechanism that connects chronic stress and its associated illnesses. This article explored the relationships between chronic stress, inflammation, and chronic illnesses, including depression, cancer, and cardiovascular disease. This article also emphasises on various possible therapeutic targets for the management of chronic stress related illnesses by targeting inflammation, namely lipoxins and alpha7 nicotinic receptors. These therapeutic targets may be useful in developing new and safe therapies for the management of chronic stress related dysfunctions.
Collapse
Affiliation(s)
- Anugya Gupta
- Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University, Bhopal, 462044, Madhya Pradesh, India
| | - Vipul Agarwal
- Ankerite College of Pharmacy, Sausheer Khera, Parvar Purab, Mohanlalganj, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
3
|
Shaikh M, Doshi G. Epigenetic aging in major depressive disorder: Clocks, mechanisms and therapeutic perspectives. Eur J Pharmacol 2024; 978:176757. [PMID: 38897440 DOI: 10.1016/j.ejphar.2024.176757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Depression, a chronic mental disorder characterized by persistent sadness, loss of interest, and difficulty in daily tasks, impacts millions globally with varying treatment options. Antidepressants, despite their long half-life and minimal effectiveness, leave half of patients undertreated, highlighting the need for new therapies to enhance well-being. Epigenetics, which studies genetic changes in gene expression or cellular phenotype without altering the underlying Deoxyribonucleic Acid (DNA) sequence, is explored in this article. This article delves into the intricate relationship between epigenetic mechanisms and depression, shedding light on how environmental stressors, early-life adversity, and genetic predispositions shape gene expression patterns associated with depression. We have also discussed Histone Deacetylase (HDAC) inhibitors, which enhance cognitive function and mood regulation in depression. Non-coding RNAs, (ncRNAs) such as Long Non-Coding RNAs (lncRNAs) and micro RNA (miRNAs), are highlighted as potential biomarkers for detecting and monitoring major depressive disorder (MDD). This article also emphasizes the reversible nature of epigenetic modifications and their influence on neuronal growth processes, underscoring the dynamic interplay between genetics, environment, and epigenetics in depression development. It explores the therapeutic potential of targeting epigenetic pathways in treating clinical depression. Additionally, it examines clinical findings related to epigenetic clocks and their role in studying depression and biological aging.
Collapse
Affiliation(s)
- Muqtada Shaikh
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
4
|
Aljabali AAA, Alkaraki AK, Gammoh O, Tambuwala MM, Mishra V, Mishra Y, Hassan SS, El-Tanani M. Deciphering Depression: Epigenetic Mechanisms and Treatment Strategies. BIOLOGY 2024; 13:638. [PMID: 39194576 DOI: 10.3390/biology13080638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Depression, a significant mental health disorder, is under intense research scrutiny to uncover its molecular foundations. Epigenetics, which focuses on controlling gene expression without altering DNA sequences, offers promising avenues for innovative treatment. This review explores the pivotal role of epigenetics in depression, emphasizing two key aspects: (I) identifying epigenetic targets for new antidepressants and (II) using personalized medicine based on distinct epigenetic profiles, highlighting potential epigenetic focal points such as DNA methylation, histone structure alterations, and non-coding RNA molecules such as miRNAs. Variations in DNA methylation in individuals with depression provide opportunities to target genes that are associated with neuroplasticity and synaptic activity. Aberrant histone acetylation may indicate that antidepressant strategies involve enzyme modifications. Modulating miRNA levels can reshape depression-linked gene expression. The second section discusses personalized medicine based on epigenetic profiles. Analyzing these patterns could identify biomarkers associated with treatment response and susceptibility to depression, facilitating tailored treatments and proactive mental health care. Addressing ethical concerns regarding epigenetic information, such as privacy and stigmatization, is crucial in understanding the biological basis of depression. Therefore, researchers must consider these issues when examining the role of epigenetics in mental health disorders. The importance of epigenetics in depression is a critical aspect of modern medical research. These findings hold great potential for novel antidepressant medications and personalized treatments, which would significantly improve patient outcomes, and transform psychiatry. As research progresses, it is expected to uncover more complex aspects of epigenetic processes associated with depression, enhance our comprehension, and increase the effectiveness of therapies.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Almuthanna K Alkaraki
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| |
Collapse
|
5
|
Hofstra BM, Hoeksema EE, Kas MJH, Verbeek DS. Cross-species analysis uncovers the mitochondrial stress response in the hippocampus as a shared mechanism in mouse early life stress and human depression. Neurobiol Stress 2024; 31:100643. [PMID: 38800537 PMCID: PMC11127276 DOI: 10.1016/j.ynstr.2024.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Depression, or major depressive disorder, poses a significant burden for both individuals and society, affecting approximately 10.8% of the general population. This psychiatric disorder leads to approximately 800,000 deaths per year. A combination of genetic and environmental factors such as early life stress (ELS) increase the risk for development of depression in humans, and a clear role for the hippocampus in the pathophysiology of depression has been shown. Nevertheless, the underlying mechanisms of depression remain poorly understood, resulting in a lack of effective treatments. To better understand the core mechanisms underlying the development of depression, we used a cross-species design to investigate shared hippocampal pathophysiological mechanisms in mouse ELS and human depression. Mice were subjected to ELS by a maternal separation paradigm, followed by RNA sequencing analysis of the adult hippocampal tissue. This identified persistent transcriptional changes linked to mitochondrial stress response pathways, with oxidative phosphorylation and protein folding emerging as the main mechanisms affected by maternal separation. Remarkably, there was a significant overlap between the pathways involved in mitochondrial stress response we observed and publicly available RNAseq data from hippocampal tissue of depressive patients. This cross-species conservation of changes in gene expression of mitochondria-related genes suggests that mitochondrial stress may play a pivotal role in the development of depression. Our findings highlight the potential significance of the hippocampal mitochondrial stress response as a core mechanism underlying the development of depression. Further experimental investigations are required to expand our understanding of these mechanisms.
Collapse
Affiliation(s)
- Bente M. Hofstra
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands
- Department of Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Emmy E. Hoeksema
- Department of Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Martien JH. Kas
- Department of Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Dineke S. Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
6
|
Bernad BC, Tomescu MC, Anghel T, Lungeanu D, Enătescu V, Bernad ES, Nicoraș V, Arnautu DA, Hogea L. Epigenetic and Coping Mechanisms of Stress in Affective Disorders: A Scoping Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:709. [PMID: 38792892 PMCID: PMC11122772 DOI: 10.3390/medicina60050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
This review aims to explore the intricate relationship among epigenetic mechanisms, stress, and affective disorders, focusing on how early life experiences and coping mechanisms contribute to susceptibility to mood disorders. Epigenetic factors play a crucial role in regulating gene expression without altering the DNA (deoxyribonucleic acid) sequence, and recent research has revealed associations between epigenetic changes and maladaptive responses to stress or psychiatric disorders. A scoping review of 33 studies employing the PRISMA-S (Preferred Reporting Items for Systematic Reviews and Meta-Analyses-Statement) guidelines investigates the role of stress-induced epigenetic mechanisms and coping strategies in affective disorder occurrence, development, and progression. The analysis encompasses various stress factors, including childhood trauma, work-related stress, and dietary deficiencies, alongside epigenetic changes, such as DNA methylation and altered gene expression. Findings indicate that specific stress-related genes frequently exhibit epigenetic changes associated with affective disorders. Moreover, the review examines coping mechanisms in patients with bipolar disorder and major depressive disorder, revealing mixed associations between coping strategies and symptom severity. While active coping is correlated with better outcomes, emotion-focused coping may exacerbate depressive or manic episodes. Overall, this review underscores the complex interplay among genetic predisposition, environmental stressors, coping mechanisms, and affective disorders. Understanding these interactions is essential for developing targeted interventions and personalized treatment strategies for individuals with mood disorders. However, further research is needed to elucidate specific genomic loci involved in affective disorders and the clinical implications of coping strategies in therapeutic settings.
Collapse
Affiliation(s)
- Brenda-Cristiana Bernad
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania;
- Center for Neuropsychology and Behavioral Medicine, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania; (T.A.); (L.H.)
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.-C.T.); (D.-A.A.)
| | - Mirela-Cleopatra Tomescu
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.-C.T.); (D.-A.A.)
- Department of Internal Medicine, ”Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Timisoara Municipal Clinical Emergency Hospital, 300040 Timișoara, Romania
| | - Teodora Anghel
- Center for Neuropsychology and Behavioral Medicine, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania; (T.A.); (L.H.)
- Department of Neuroscience, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania;
| | - Diana Lungeanu
- Center for Modeling Biological Systems and Data Analysis, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania;
- Department of Functional Sciences, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania
| | - Virgil Enătescu
- Department of Neuroscience, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania;
- Clinic of Psychiatry, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Elena Silvia Bernad
- Center for Neuropsychology and Behavioral Medicine, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania; (T.A.); (L.H.)
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania
- Ist Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timișoara, Romania;
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Vlad Nicoraș
- Ist Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timișoara, Romania;
| | - Diana-Aurora Arnautu
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.-C.T.); (D.-A.A.)
- Department of Internal Medicine, ”Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Institute of Cardiovascular Diseases Timișoara, 300310 Timișoara, Romania
| | - Lavinia Hogea
- Center for Neuropsychology and Behavioral Medicine, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania; (T.A.); (L.H.)
- Department of Neuroscience, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania;
| |
Collapse
|
7
|
Nakashima M, Suga N, Yoshikawa S, Ikeda Y, Matsuda S. Potential Molecular Mechanisms of Alcohol Use Disorder with Non-Coding RNAs and Gut Microbiota for the Development of Superior Therapeutic Application. Genes (Basel) 2024; 15:431. [PMID: 38674366 PMCID: PMC11049149 DOI: 10.3390/genes15040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Many investigations have evaluated the expression of noncoding RNAs (ncRNAs) as well as their related molecular functions and biological machineries in individuals with alcohol dependence. Alcohol dependence may be one of the most prevailing psychological disorders globally, and its pathogenesis is intricate and inadequately comprehended. There is substantial evidence indicating significant links between multiple genetic factors and the development of alcohol dependence. In particular, the critical roles of ncRNAs have been emphasized in the pathology of mental illnesses, probably including alcohol dependence. In the comprehension of the action of ncRNAs and their machineries of modification, furthermore, they have emerged as therapeutic targets for a variety of psychiatric illnesses, including alcohol dependence. It is worth mentioning that the dysregulated expression of ncRNAs has been regularly detected in individuals with alcohol dependence. An in-depth knowledge of the roles of ncRNAs and m6A modification may be valuable for the development of a novel treatment against alcohol dependence. In general, a more profound understanding of the practical roles of ncRNAs might make important contributions to the precise diagnosis and/or actual management of alcohol dependence. Here, in this review, we mostly focused on up-to-date knowledge regarding alterations and/or modifications in the expression of ncRNAs in individuals with alcohol dependence. Then, we present prospects for future research and therapeutic applications with a novel concept of the engram system.
Collapse
Affiliation(s)
| | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
8
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Stoffel M, Rahn S, Neubauer AB, Moessner M, Aguilar-Raab C, Ditzen B. Associations of SLC6A4 methylation with salivary cortisol, salivary alpha-amylase, and subjective stress in everyday life. Psychoneuroendocrinology 2023; 153:106283. [PMID: 37196602 DOI: 10.1016/j.psyneuen.2023.106283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
Dysregulations of the hypothalamic-pituitary-adrenal (HPA) and sympatho-adrenal medullary (SAM) axis are associated with mental and somatic illness. However, there is lack of knowledge regarding the molecular mechanisms underlying these effects. Epigenetic states in the serotonin transporter gene (SLC6A4) were shown to be associated with stress in various forms. We hypothesized that levels of DNA methylation (DNAm) of SLC6A4 would be associated with altered SAM- and HPA regulation in daily life. N = 74 healthy persons participated in the study. An ecological momentary assessment (EMA) approach was used to assess indicators of stress in daily life. Each day included six concurrent assessments of saliva, to quantify cortisol (sCort; HPA axis) and alpha-amylase (sAA; SAM axis), and to assess self-reports on subjective stress. To assess SLC6A4 DNAm, peripheral blood was drawn and analyzed via bisulfite pyrosequencing. All data were assessed in two waves three months apart, each including two days of EMA and the assessment of SLC6A4 DNAm. Data were analyzed using multilevel models. On the between-person level, higher average levels of SLC6A4 DNAm were associated with higher average levels of sAA, but not with average levels of sCort. On the within-person level, higher levels of SLC6A4 DNAm were associated with lower levels of sAA and sCort. There were no associations of subjective stress with SLC6A4 DNAm. The results help to clarify the association between environmental stress and stress axes regulation, pointing towards an important role of differential within- and between-person effects of SLC6A4 DNAm, which might shape this association.
Collapse
Affiliation(s)
- Martin Stoffel
- Institute of Medical Psychology, Center for Psychosocial Medicine, Heidelberg University Hospital, Ruprecht-Karls University Heidelberg, Bergheimer Straße 20, 69115 Heidelberg, Germany.
| | - Stefanie Rahn
- Clinic of Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Andreas B Neubauer
- Department for Education and Human Development, DIPF | Leibniz Institute for Research and Information in Education, Rostocker Straße 6, 60323 Frankfurt/Main, Germany
| | - Markus Moessner
- Center for Psychotherapy Research, Heidelberg University Hospital, Bergheimer Str. 54, 69115 Heidelberg, Germany
| | - Corina Aguilar-Raab
- Institute of Medical Psychology, Center for Psychosocial Medicine, Heidelberg University Hospital, Ruprecht-Karls University Heidelberg, Bergheimer Straße 20, 69115 Heidelberg, Germany
| | - Beate Ditzen
- Institute of Medical Psychology, Center for Psychosocial Medicine, Heidelberg University Hospital, Ruprecht-Karls University Heidelberg, Bergheimer Straße 20, 69115 Heidelberg, Germany.
| |
Collapse
|
10
|
Johnston JN, Greenwald MS, Henter ID, Kraus C, Mkrtchian A, Clark NG, Park LT, Gold P, Zarate CA, Kadriu B. Inflammation, stress and depression: An exploration of ketamine's therapeutic profile. Drug Discov Today 2023; 28:103518. [PMID: 36758932 PMCID: PMC10050119 DOI: 10.1016/j.drudis.2023.103518] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Well-established animal models of depression have described a proximal relationship between stress and central nervous system (CNS) inflammation - a relationship mirrored in the peripheral inflammatory biomarkers of individuals with depression. Evidence also suggests that stress-induced proinflammatory states can contribute to the neurobiology of treatment-resistant depression. Interestingly, ketamine, a rapid-acting antidepressant, can partially exert its therapeutic effects via anti-inflammatory actions on the hypothalamic-pituitary adrenal (HPA) axis, the kynurenine pathway or by cytokine suppression. Further investigations into the relationship between ketamine, inflammation and stress could provide insight into ketamine's unique therapeutic mechanisms and stimulate efforts to develop rapid-acting, anti-inflammatory-based antidepressants.
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Maximillian S Greenwald
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Kraus
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anahit Mkrtchian
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Neil G Clark
- US School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Philip Gold
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Jia Z, Gao Y, Zhao L, Han S. Effects of pain and depression on the relationship between household solid fuel use and disability among middle-aged and older adults. Sci Rep 2022; 12:21270. [PMID: 36481918 PMCID: PMC9732289 DOI: 10.1038/s41598-022-25825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Household air pollution (HAP) is suggested to increases people's risk of disability, but mediating mechanisms between HAP and disability remains under-investigated. The aim of this study was to investigate the underlying mechanisms between household air pollution and disability in middle-aged and older adults (i.e., older than 45 years) using a nationally representative prospective cohort. In total, 3754 middle-aged and older adults were selected from the China Health and Retirement Longitudinal Study. Correlation analysis and logistic regression analysis were employed to estimate the association between HAP, pain, depression and disability. Finally, three significant mediation pathways through which HAP directly impacts disability were found: (1) pain (B = 0.09, 95% CI 0.01, 0.02), accounting for 15.25% of the total effect; (2) depression (B = 0.07, 95% CI 0.004, 0.02), accounting for 11.86% of the total effect; (3) pain and depression (B = 0.04, 95% CI 0.003, 0.01), accounting for 6.78% of the total effect. The total mediating effect was 33.89%. This study clarified that HAP can indirectly affect disability through the respective and serial mediating roles of pain and depression. These findings potentially have important implications for national strategies concerning the widespread use of clean fuels by citizens.
Collapse
Affiliation(s)
- Zhihao Jia
- School of Physical Education, Shandong University, Jinan, 250061, China
| | - Yan Gao
- School of Physical Education, Shandong University, Jinan, 250061, China.
| | - Liangyu Zhao
- School of Physical Education, Shandong University, Jinan, 250061, China
| | - Suyue Han
- School of Physical Education, Shandong University, Jinan, 250061, China
| |
Collapse
|
12
|
Liu Z, Wang M, Cheng A, Ou X, Mao S, Yang Q, Wu Y, Zhao XX, Huang J, Gao Q, Zhang S, Sun D, Tian B, Jia R, Chen S, Liu M, Zhu D. Gene regulation in animal miRNA biogenesis. Epigenomics 2022; 14:1197-1212. [PMID: 36382497 DOI: 10.2217/epi-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
miRNAs are a class of noncoding RNAs of approximately 19-22 nucleotides that are widely found in animals, plants, bacteria and even viruses. Dysregulation of the expression profile of miRNAs is importantly linked to the development of diseases. Epigenetic modifications regulate gene expression and control cellular phenotypes. Although miRNAs are used as an epigenetic regulation tool, the biogenesis of miRNAs is also regulated by epigenetic events. Here the authors review the mechanisms and roles of epigenetic modification (DNA methylation, histone modifications), RNA modification and ncRNAs in the biogenesis of miRNAs, aiming to deepen the understanding of the miRNA biogenesis regulatory network.
Collapse
Affiliation(s)
- Zezheng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| |
Collapse
|
13
|
Paoli C, Misztak P, Mazzini G, Musazzi L. DNA Methylation in Depression and Depressive-Like Phenotype: Biomarker or Target of Pharmacological Intervention? Curr Neuropharmacol 2022; 20:2267-2291. [PMID: 35105292 PMCID: PMC9890294 DOI: 10.2174/1570159x20666220201084536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating psychiatric disorder, the third leading global cause of disability. Regarding aetiopathogenetic mechanisms involved in the onset of depressive disorders, the interaction between genetic vulnerability traits and environmental factors is believed to play a major role. Although much is still to be elucidated about the mechanisms through which the environment can interact with genetic background shaping the disease risk, there is a general agreement about a key role of epigenetic marking. In this narrative review, we focused on the association between changes in DNA methylation patterns and MDD or depressive-like phenotype in animal models, as well as mechanisms of response to antidepressant drugs. We discussed studies presenting DNA methylation changes at specific genes of interest and profiling analyses in both patients and animal models of depression. Overall, we collected evidence showing that DNA methylation could not only be considered as a promising epigenetic biomarker of pathology but could also help in predicting antidepressant treatment efficacy. Finally, we discussed the hypothesis that specific changes in DNA methylation signature could play a role in aetiopathogenetic processes as well as in the induction of antidepressant effect.
Collapse
Affiliation(s)
- Caterina Paoli
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- School of Pharmacy, Pharmacy Unit, University of Camerino, 62032 Camerino, Italy
| | - Paulina Misztak
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giulia Mazzini
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Laura Musazzi
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
14
|
Epigenetic aging and perceived psychological stress in old age. Transl Psychiatry 2022; 12:410. [PMID: 36163242 PMCID: PMC9513097 DOI: 10.1038/s41398-022-02181-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 12/20/2022] Open
Abstract
Adverse effects of psychological stress on physical and mental health, especially in older age, are well documented. How perceived stress relates to the epigenetic clock measure, DNA methylation age acceleration (DNAmAA), is less well understood and existing studies reported inconsistent results. DNAmAA was estimated from five epigenetic clocks (7-CpG, Horvath's, Hannum's, PhenoAge and GrimAge DNAmAA). Cohen's Perceived Stress Scale (PSS) was used as marker of psychological stress. We analyzed data from 1,100 Berlin Aging Study II (BASE-II) participants assessed as part of the GendAge study (mean age = 75.6 years, SD = 3.8 years, 52.1% women). In a first step, we replicated well-established associations of perceived stress with morbidity, frailty, and symptoms of depression in the BASE-II cohort studied here. In a second step, we did not find any statistically significant association of perceived stress with any of the five epigenetic clocks in multiple linear regression analyses that adjusted for covariates. Although the body of literature suggests an association between higher DNAmAA and stress or trauma during early childhood, the current study found no evidence for an association of perception of stress with DNAmAA in older people. We discuss possible reasons for the lack of associations and highlight directions for future research.
Collapse
|
15
|
Manu DM, Mwinyi J, Schiöth HB. Challenges in Analyzing Functional Epigenetic Data in Perspective of Adolescent Psychiatric Health. Int J Mol Sci 2022; 23:5856. [PMID: 35628666 PMCID: PMC9147258 DOI: 10.3390/ijms23105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
The formative period of adolescence plays a crucial role in the development of skills and abilities for adulthood. Adolescents who are affected by mental health conditions are at risk of suicide and social and academic impairments. Gene-environment complementary contributions to the molecular mechanisms involved in psychiatric disorders have emphasized the need to analyze epigenetic marks such as DNA methylation (DNAm) and non-coding RNAs. However, the large and diverse bioinformatic and statistical methods, referring to the confounders of the statistical models, application of multiple-testing adjustment methods, questions regarding the correlation of DNAm across tissues, and sex-dependent differences in results, have raised challenges regarding the interpretation of the results. Based on the example of generalized anxiety disorder (GAD) and depressive disorder (MDD), we shed light on the current knowledge and usage of methodological tools in analyzing epigenetics. Statistical robustness is an essential prerequisite for a better understanding and interpretation of epigenetic modifications and helps to find novel targets for personalized therapeutics in psychiatric diseases.
Collapse
Affiliation(s)
- Diana M. Manu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (J.M.); (H.B.S.)
| | | | | |
Collapse
|
16
|
Zhang H, Xia Y, Cao L, Chang Q, Zhao Y. Associations between long term exposures to outdoor air pollution and indoor solid fuel use and depression in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113982. [PMID: 34700082 DOI: 10.1016/j.jenvman.2021.113982] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Depression is one of the most common mental disorders. Effects of air pollution from outdoor and indoor on depression were inconsistent. We assessed 30,139 participants from Northeast China to explore the associations between long term exposures of outdoor and indoor solid fuel use and depressive symptoms. Multiple logistic regressions models as well as multiplicative interaction and additive interaction analysis were used. Outdoor exposures to air pollutants of particulate matter (with an aerodynamic diameter <2.5 μm, [PM2.5], odds ratio [OR] = 1.98 per standard deviation [SD], 95% confidence interval [CI]: 1.78, 2.19; with an aerodynamic diameter <10 μm, [PM10], OR = 1.83, 95% CI:1.68, 2.00), sulfur dioxide (SO2, OR = 1.42, 95% CI: 1.33, 1.52), and nitrogen dioxide (NO2, OR = 1.62, 95% CI: 1.49, 1.76) were significantly associated with higher occurrence of depressive symptoms. A significant linear trend for increased occurrence of depressive symptoms was observed in participants using both solid fuels for cooking and heating (P = 0.04). Indoor air pollution exposures from solid fuel use for heating (OR = 1.16, 95%CI: 1.00, 1.35) and high cooking frequency (OR = 1.17, 95%CI: 1.00, 1.37) were significantly associated with increased occurrence of depressive symptoms. We observed significant interactions of indoor solid fuel use and outdoor air pollution exposures on depressive symptoms (indoor fuel use for cooking and SO2, P value = 0.04; solid fuel use for heating and NO2, P value = 0.02). Solid fuel use for cooking weakened the associations between SO2(relative excess risk due to interaction [RERI] = -1.37, 95% CI: -1.88, -0.86) and depressive symptoms. Solid fuel use for heating weakened the associations between NO2 (RERI = -1.91, 95% CI: -2.55, -1.27) and depressive symptoms. Compared with individual associations, antagonistic interactions of outdoor air pollution and indoor solid fuel use on depressive symptoms might exist. Our findings contribute to better understandings for the associations between air pollution and depressive symptoms, which might be useful for developing effective strategies for depression prevention and air pollution control.
Collapse
Affiliation(s)
- Hehua Zhang
- Clinical Research Center, Shengjing Hospital of China Medical University, Heping District, Sanhao Street, No. 36, Shenyang City, Liaoning Province, 110004, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Heping District, Sanhao Street, No. 36, Shenyang, Liaoning Province, 110004, China
| | - Limin Cao
- The Third Central Hospital of Tianjin, Hedong District, Jintang Road, No. 83, Tianjin, 300170, China
| | - Qing Chang
- Clinical Research Center, Shengjing Hospital of China Medical University, Heping District, Sanhao Street, No. 36, Shenyang City, Liaoning Province, 110004, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Heping District, Sanhao Street, No. 36, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
17
|
Barbieri SS, Sandrini L, Musazzi L, Popoli M, Ieraci A. Apocynin Prevents Anxiety-Like Behavior and Histone Deacetylases Overexpression Induced by Sub-Chronic Stress in Mice. Biomolecules 2021; 11:biom11060885. [PMID: 34203655 PMCID: PMC8232084 DOI: 10.3390/biom11060885] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 02/08/2023] Open
Abstract
Anxiety disorders are common mental health diseases affecting up to 7% of people around the world. Stress is considered one of the major environmental risk factors to promote anxiety disorders through mechanisms involving epigenetic changes. Moreover, alteration in redox balance and increased reactive oxygen species (ROS) production have been detected in anxiety patients and in stressed-animal models of anxiety. Here we tested if the administration of apocynin, a natural origin antioxidant, may prevent the anxiety-like phenotype and reduction of histone acetylation induced by a subchronic forced swimming stress (FSS) paradigm. We found that apocynin prevented the enhanced latency time in the novelty-suppressed feeding test, and the production of malondialdehyde induced by FSS. Moreover, apocynin was able to block the upregulation of p47phox, a key subunit of the NADPH oxidase complex. Finally, apocynin prevented the rise of hippocampal Hdac1, Hdac4 and Hdac5, and the reduction of histone-3 acetylation levels promoted by FSS exposure. In conclusion, our results provide evidence that apocynin reduces the deleterious effect of stress and suggests that oxidative stress may regulate epigenetic mechanisms.
Collapse
Affiliation(s)
- Silvia S. Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.S.B.); (L.S.)
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.S.B.); (L.S.)
| | - Laura Musazzi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, University of Milan, 20133 Milan, Italy;
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, University of Milan, 20133 Milan, Italy;
- Correspondence:
| |
Collapse
|
18
|
Affiliation(s)
- Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| |
Collapse
|