1
|
Tirumala NA, Redpath GMI, Skerhut SV, Dolai P, Kapoor-Kaushik N, Ariotti N, Vijay Kumar K, Ananthanarayanan V. Single-molecule imaging of stochastic interactions that drive dynein activation and cargo movement in cells. J Cell Biol 2024; 223:e202210026. [PMID: 38240798 PMCID: PMC10798859 DOI: 10.1083/jcb.202210026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/10/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Cytoplasmic dynein 1 (dynein) is the primary minus end-directed motor protein in most eukaryotic cells. Dynein remains in an inactive conformation until the formation of a tripartite complex comprising dynein, its regulator dynactin, and a cargo adaptor. How this process of dynein activation occurs is unclear since it entails the formation of a three-protein complex inside the crowded environs of a cell. Here, we employed live-cell, single-molecule imaging to visualize and track fluorescently tagged dynein. First, we observed that only ∼30% of dynein molecules that bound to the microtubule (MT) engaged in minus end-directed movement, and that too for a short duration of ∼0.6 s. Next, using high-resolution imaging in live and fixed cells and using correlative light and electron microscopy, we discovered that dynactin and endosomal cargo remained in proximity to each other and to MTs. We then employed two-color imaging to visualize cargo movement effected by single motor binding. Finally, we performed long-term imaging to show that short movements are sufficient to drive cargo to the perinuclear region of the cell. Taken together, we discovered a search mechanism that is facilitated by dynein's frequent MT binding-unbinding kinetics: (i) in a futile event when dynein does not encounter cargo anchored in proximity to the MT, dynein dissociates and diffuses into the cytoplasm, (ii) when dynein encounters cargo and dynactin upon MT binding, it moves cargo in a short run. Several of these short runs are undertaken in succession for long-range directed movement. In conclusion, we demonstrate that dynein activation and cargo capture are coupled in a step that relies on the reduction of dimensionality to enable minus end-directed transport in cellulo and that complex cargo behavior emerges from stochastic motor-cargo interactions.
Collapse
Affiliation(s)
| | - Gregory Michael Ian Redpath
- EMBL Australia Node in Single Molecule Science, Department of Molecular MedicineSchool of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Sarah Viktoria Skerhut
- EMBL Australia Node in Single Molecule Science, Department of Molecular MedicineSchool of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Pritha Dolai
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | | | - Nicholas Ariotti
- Electron Microscopy Unit, University of New South Wales, Sydney, Australia
| | - K. Vijay Kumar
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular MedicineSchool of Biomedical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Abstract
In vitro single-molecule imaging experiments have provided insight into the stepping behavior, force production, and activation of several molecular motors. However, due to the difficulty in visualizing single molecules of motor proteins in vivo, the physiological function and regulation of motors at the single-molecule level have not been studied widely. Here, we describe how highly inclined and laminated optical sheet (HILO) microscopy can be adapted to visualize single molecules of the motor protein cytoplasmic dynein-1 in mammalian cells with high signal-to-noise ratio and temporal resolution.
Collapse
|
3
|
Podh NK, Paliwal S, Dey P, Das A, Morjaria S, Mehta G. In-vivo Single-Molecule Imaging in Yeast: Applications and Challenges. J Mol Biol 2021; 433:167250. [PMID: 34537238 DOI: 10.1016/j.jmb.2021.167250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Single-molecule imaging has gained momentum to quantify the dynamics of biomolecules in live cells, as it provides direct real-time measurements of various cellular activities under their physiological environment. Yeast, a simple and widely used eukaryote, serves as a good model system to quantify single-molecule dynamics of various cellular processes because of its low genomic and cellular complexities, as well as its facile ability to be genetically manipulated. In the past decade, significant developments have been made regarding the intracellular labeling of biomolecules (proteins, mRNA, fatty acids), the microscopy setups to visualize single-molecules and capture their fast dynamics, and the data analysis pipelines to interpret such dynamics. In this review, we summarize the current state of knowledge for the single-molecule imaging in live yeast cells to provide a ready reference for beginners. We provide a comprehensive table to demonstrate how various labs tailored the imaging regimes and data analysis pipelines to estimate various biophysical parameters for a variety of biological processes. Lastly, we present current challenges and future directions for developing better tools and resources for single-molecule imaging in live yeast cells.
Collapse
Affiliation(s)
- Nitesh Kumar Podh
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India. https://twitter.com/@PodhNitesh
| | - Sheetal Paliwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India. https://twitter.com/@Sheetal62666036
| | - Partha Dey
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India. https://twitter.com/@ParthaD63416958
| | - Ayan Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India. https://twitter.com/@AyanDas76471821
| | - Shruti Morjaria
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, The Maharaja Sayajirao University of Baroda, Vadodara, India. https://twitter.com/@shruti_morjaria
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Li Y, Yi J, Liu W, Liu Y, Liu J. Gaining insight into cellular cardiac physiology using single particle tracking. J Mol Cell Cardiol 2020; 148:63-77. [PMID: 32871158 DOI: 10.1016/j.yjmcc.2020.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/29/2022]
Abstract
Single particle tracking (SPT) is a robust technique to monitor single-molecule behaviors in living cells directly. By this approach, we can uncover the potential biological significance of particle dynamics by statistically characterizing individual molecular behaviors. SPT provides valuable information at the single-molecule level, that could be obscured by simple averaging that is inherent to conventional ensemble measurements. Here, we give a brief introduction to SPT including the commonly used optical implementations, fluorescence labeling strategies, and data analysis methods. We then focus on how SPT has been harnessed to decipher myocardial function. In this context, SPT has provided novel insight into the lateral diffusion of signal receptors and ion channels, the dynamic organization of cardiac nanodomains, subunit composition and stoichiometry of cardiac ion channels, myosin movement along actin filaments, the kinetic features of transcription factors involved in cardiac remodeling, and the intercellular communication by nanotubes. Finally, we speculate on the prospects and challenges of applying SPT to future questions regarding cellular cardiac physiology using SPT.
Collapse
Affiliation(s)
- Ying Li
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Jing Yi
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Wenjuan Liu
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Yun Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China.
| | - Jie Liu
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Li CC, Li Y, Zhang Y, Zhang CY. Single-molecule fluorescence resonance energy transfer and its biomedical applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Tirumala NA, Ananthanarayanan V. Role of Dynactin in the Intracellular Localization and Activation of Cytoplasmic Dynein. Biochemistry 2019; 59:156-162. [PMID: 31591892 DOI: 10.1021/acs.biochem.9b00772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytoplasmic dynein, the major minus end-directed motor protein in several cell types, transports a variety of intracellular cargo upon forming a processive tripartite complex with its activator dynactin and cargo adaptors such as Hook3 and BicD2. Our current understanding of dynein regulation stems from a combination of in vivo studies of cargo movement upon perturbation of dynein activity, in vitro single-molecule experiments, and cryo-electron microscopy studies of dynein structure and its interaction with dynactin and cargo adaptors. In this Perspective, we first consolidate data from recent publications to understand how perturbations to the dynein-dynactin interaction and dynactin's in vivo localization alter the behavior of dynein-driven cargo transport in a cell type- and experimental condition-specific manner. In addition, we touch upon results from in vivo and in vitro studies to elucidate how dynein's interaction with dynactin and cargo adaptors activates dynein and enhances its processivity. Finally, we propose questions that need to be addressed in the future with appropriate experimental designs so as to improve our understanding of the spatiotemporal regulation of dynein's function in the context of the distribution and dynamics of dynactin in living cells.
Collapse
|
7
|
Ananthanarayanan V. Activation of the motor protein upon attachment: Anchors weigh in on cytoplasmic dynein regulation. Bioessays 2016; 38:514-25. [PMID: 27143631 DOI: 10.1002/bies.201600002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cytoplasmic dynein is the major minus-end-directed motor protein in eukaryotes, and has functions ranging from organelle and vesicle transport to spindle positioning and orientation. The mode of regulation of dynein in the cell remains elusive, but a tantalising possibility is that dynein is maintained in an inhibited, non-motile state until bound to cargo. In vivo, stable attachment of dynein to the cell membrane via anchor proteins enables dynein to produce force by pulling on microtubules and serves to organise the nuclear material. Anchor proteins of dynein assume diverse structures and functions and differ in their interaction with the membrane. In yeast, the anchor protein has come to the fore as one of the key mediators of dynein activity. In other systems, much is yet to be discovered about the anchors, but future work in this area will prove invaluable in understanding dynein regulation in the cell.
Collapse
|