1
|
Hamilton GE, Wadkovsky KN, Gladfelter AS. A single septin from a polyextremotolerant yeast recapitulates many canonical functions of septin hetero-oligomers. Mol Biol Cell 2024; 35:ar132. [PMID: 39196657 PMCID: PMC11481698 DOI: 10.1091/mbc.e24-05-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024] Open
Abstract
Morphological complexity and plasticity are hallmarks of polyextremotolerant fungi. Septins are conserved cytoskeletal proteins and key contributors to cell polarity and morphogenesis. They sense membrane curvature, coordinate cell division, and influence diffusion at the plasma membrane. Four septin homologues are conserved from yeasts to humans, the systems in which septins have been most studied. But there is also a fifth family of opisthokont septins that remain biochemically mysterious. Members of this family, Group 5 septins, appear in the genomes of filamentous fungi, but are understudied due to their absence from ascomycete yeasts. Knufia petricola is an emerging model polyextremotolerant black fungus that can also serve as a model system for Group 5 septins. We have recombinantly expressed and biochemically characterized KpAspE, a Group 5 septin from K. petricola. This septin--by itself in vitro--recapitulates many functions of canonical septin hetero-octamers. KpAspE is an active GTPase that forms diverse homo-oligomers, binds shallow membrane curvatures, and interacts with the terminal subunit of canonical septin hetero-octamers. These findings raise the possibility that Group 5 septins govern the higher-order structures formed by canonical septins, which in K. petricola cells form extended filaments, and provide insight into how septin hetero-oligomers evolved from ancient homomers.
Collapse
Affiliation(s)
- Grace E. Hamilton
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | | | - Amy S. Gladfelter
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27708
| |
Collapse
|
2
|
Nakazawa K, Chauvin B, Mangenot S, Bertin A. Reconstituted in vitro systems to reveal the roles and functions of septins. J Cell Sci 2023; 136:jcs259448. [PMID: 37815088 DOI: 10.1242/jcs.259448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Septins are essential cytoskeletal proteins involved in key cellular processes and have also been implicated in diseases from cancers to neurodegenerative pathologies. However, they have not been as thoroughly studied as other cytoskeletal proteins. In vivo, septins interact with other cytoskeletal proteins and with the inner plasma membrane. Hence, bottom-up in vitro cell-free assays are well suited to dissect the roles and behavior of septins in a controlled environment. Specifically, in vitro studies have been invaluable in describing the self-assembly of septins into a large diversity of ultrastructures. Given that septins interact specifically with membrane, the details of these septin-membrane interactions have been analyzed using reconstituted lipid systems. In particular, at a membrane, septins are often localized at curvatures of micrometer scale. In that context, in vitro assays have been performed with substrates of varying curvatures (spheres, cylinders or undulated substrates) to probe the sensitivity of septins to membrane curvature. This Review will first present the structural properties of septins in solution and describe the interplay of septins with cytoskeletal partners. We will then discuss how septins interact with biomimetic membranes and induce their reshaping. Finally, we will highlight the curvature sensitivity of septins and how they alter the mechanical properties of membranes.
Collapse
Affiliation(s)
- Koyomi Nakazawa
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Brieuc Chauvin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Stéphanie Mangenot
- Laboratoire Matière et Systèmes Complexes , Université de Paris Cité, CNRS UMR 7057, 45 Rue des Saint Pères, 75006 Paris, France
| | - Aurélie Bertin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| |
Collapse
|
3
|
Wang Y, Li W, Ye B, Bi X. Chemical and Biological Strategies for Profiling Protein-Protein Interactions in Living Cells. Chem Asian J 2023; 18:e202300226. [PMID: 37089007 PMCID: PMC10946512 DOI: 10.1002/asia.202300226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Protein-protein interactions (PPIs) play critical roles in almost all cellular signal transduction events. Characterization of PPIs without interfering with the functions of intact cells is very important for basic biology study and drug developments. However, the ability to profile PPIs especially those weak/transient interactions in their native states remains quite challenging. To this end, many endeavors are being made in developing new methods with high efficiency and strong operability. By coupling with advanced fluorescent microscopy and mass spectroscopy techniques, these strategies not only allow us to visualize the subcellular locations and monitor the functions of protein of interest (POI) in real time, but also enable the profiling and identification of potential unknown interacting partners in high-throughput manner, which greatly facilitates the elucidation of molecular mechanisms underlying numerous pathophysiological processes. In this review, we will summarize the typical methods for PPIs identification in living cells and their principles, advantages and limitations will also be discussed in detail.
Collapse
Affiliation(s)
- You‐Yu Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014, Zhejiang ProvinceP. R. China
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityVictoria3086Australia
| | - Bang‐Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014, Zhejiang ProvinceP. R. China
| | - Xiao‐Bao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014, Zhejiang ProvinceP. R. China
| |
Collapse
|
4
|
Fluorescence resonance energy transfer-based nanomaterials for the sensing in biological systems. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Vial A, Taveneau C, Costa L, Chauvin B, Nasrallah H, Godefroy C, Dosset P, Isambert H, Ngo KX, Mangenot S, Levy D, Bertin A, Milhiet PE. Correlative AFM and fluorescence imaging demonstrate nanoscale membrane remodeling and ring-like and tubular structure formation by septins. NANOSCALE 2021; 13:12484-12493. [PMID: 34225356 DOI: 10.1039/d1nr01978c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Septins are ubiquitous cytoskeletal filaments that interact with the inner plasma membrane and are essential for cell division in eukaryotes. In cellular contexts, septins are often localized at micrometric Gaussian curvatures, where they assemble onto ring-like structures. The behavior of budding yeast septins depends on their specific interaction with inositol phospholipids, enriched at the inner leaflet of the plasma membrane. Septin filaments are built from the non-polar self-assembly of short rods into filaments. However, the molecular mechanisms regulating the interplay with the inner plasma membrane and the resulting interaction with specific curvatures are not fully understood. In this report, we have imaged dynamical molecular assemblies of budding yeast septins on PIP2-containing supported lipid bilayers using a combination of high-speed AFM and correlative AFM-fluorescence microscopy. Our results clearly demonstrate that septins are able to bind to flat supported lipid bilayers and thereafter induce the remodeling of membranes. Short septin rods (octamers subunits) can indeed destabilize supported lipid bilayers and reshape the membrane to form 3D structures such as rings and tubes, demonstrating that long filaments are not necessary for septin-induced membrane buckling.
Collapse
Affiliation(s)
- Anthony Vial
- Centre de Biochimie Structurale (CBS), Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Szuba A, Bano F, Castro-Linares G, Iv F, Mavrakis M, Richter RP, Bertin A, Koenderink GH. Membrane binding controls ordered self-assembly of animal septins. eLife 2021; 10:63349. [PMID: 33847563 PMCID: PMC8099429 DOI: 10.7554/elife.63349] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
Septins are conserved cytoskeletal proteins that regulate cell cortex mechanics. The mechanisms of their interactions with the plasma membrane remain poorly understood. Here, we show by cell-free reconstitution that binding to flat lipid membranes requires electrostatic interactions of septins with anionic lipids and promotes the ordered self-assembly of fly septins into filamentous meshworks. Transmission electron microscopy reveals that both fly and mammalian septin hexamers form arrays of single and paired filaments. Atomic force microscopy and quartz crystal microbalance demonstrate that the fly filaments form mechanically rigid, 12- to 18-nm thick, double layers of septins. By contrast, C-terminally truncated septin mutants form 4-nm thin monolayers, indicating that stacking requires the C-terminal coiled coils on DSep2 and Pnut subunits. Our work shows that membrane binding is required for fly septins to form ordered arrays of single and paired filaments and provides new insights into the mechanisms by which septins may regulate cell surface mechanics.
Collapse
Affiliation(s)
- Agata Szuba
- AMOLF, Department of Living Matter, Biological Soft Matter group, Amsterdam, Netherlands
| | - Fouzia Bano
- School of Biomedical Sciences, Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom.,Bragg Centre for Materials Research, University of Leeds, Leeds, United Kingdom
| | - Gerard Castro-Linares
- AMOLF, Department of Living Matter, Biological Soft Matter group, Amsterdam, Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Francois Iv
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, Marseille, France
| | - Manos Mavrakis
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, Marseille, France
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom.,Bragg Centre for Materials Research, University of Leeds, Leeds, United Kingdom
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Gijsje H Koenderink
- AMOLF, Department of Living Matter, Biological Soft Matter group, Amsterdam, Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
7
|
DeRose BT, Kelley RS, Ravi R, Kokona B, Beld J, Spiliotis ET, Padrick SB. Production and analysis of a mammalian septin hetero-octamer complex. Cytoskeleton (Hoboken) 2020; 77:485-499. [PMID: 33185030 DOI: 10.1002/cm.21643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/26/2020] [Accepted: 11/08/2020] [Indexed: 01/19/2023]
Abstract
The septins are filament-forming proteins found in diverse eukaryotes from fungi to vertebrates, with roles in cytokinesis, shaping of membranes and modifying cytoskeletal organization. These GTPases assemble into rod-shaped soluble hetero-hexamers and hetero-octamers in mammals, which polymerize into filaments and higher order structures. While the cell biology and pathobiology of septins are advancing rapidly, mechanistic study of the mammalian septins is limited by a lack of recombinant hetero-octamer materials. We describe here the production and characterization of a recombinant mammalian septin hetero-octamer of defined stoichiometry, the SEPT2/SEPT6/SEPT7/SEPT3 complex. Using a fluorescent protein fusion to the complex, we observed filaments assembled from this complex. In addition, we used this novel tool to resolve recent questions regarding the organization of the soluble septin complex. Biochemical characterization of a SEPT3 truncation that disrupts SEPT3-SEPT3 interactions is consistent with SEPT3 occupying a central position in the complex while the SEPT2 subunits are at the ends of the rod-shaped octameric complexes. Consistent with SEPT2 being on the complex ends, we find that our purified SEPT2/SEPT6/SEPT7/SEPT3 hetero-octamer copolymerizes into mixed filaments with separately purified SEPT2/SEPT6/SEPT7 hetero-hexamer. We expect this new recombinant production approach to lay essential groundwork for future studies into mammalian septin mechanism and function.
Collapse
Affiliation(s)
- Barry T DeRose
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Robert S Kelley
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA.,VCU Health System, Richmond, Virginia, USA
| | - Roshni Ravi
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA.,WuXi Advanced Therapies, Philadelphia, Pennsylvania, USA
| | - Bashkim Kokona
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Shae B Padrick
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Jiao F, Cannon KS, Lin YC, Gladfelter AS, Scheuring S. The hierarchical assembly of septins revealed by high-speed AFM. Nat Commun 2020; 11:5062. [PMID: 33033254 PMCID: PMC7545167 DOI: 10.1038/s41467-020-18778-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Septins are GTP-binding proteins involved in diverse cellular processes including division and membrane remodeling. Septins form linear, palindromic heteromeric complexes that can assemble in filaments and higher-order structures. Structural studies revealed various septin architectures, but questions concerning assembly-dynamics and -pathways persist. Here we used high-speed atomic force microscopy (HS-AFM) and kinetic modeling which allowed us to determine that septin filament assembly was a diffusion-driven process, while formation of higher-order structures was complex and involved self-templating. Slightly acidic pH and increased monovalent ion concentrations favor filament-assembly, -alignment and -pairing. Filament-alignment and -pairing further favored diffusion-driven assembly. Pairing is mediated by the septin N-termini face, and may occur symmetrically or staggered, likely important for the formation of higher-order structures of different shapes. Multilayered structures are templated by the morphology of the underlying layers. The septin C-termini face, namely the C-terminal extension of Cdc12, may be involved in membrane binding.
Collapse
Affiliation(s)
- Fang Jiao
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kevin S Cannon
- Department of Biology, University of North Carolina and Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yi-Chih Lin
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina and Chapel Hill, Chapel Hill, NC, 27599, USA
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Khan A, Newby J, Gladfelter AS. Control of septin filament flexibility and bundling by subunit composition and nucleotide interactions. Mol Biol Cell 2018; 29:702-712. [PMID: 29321251 PMCID: PMC6003234 DOI: 10.1091/mbc.e17-10-0608] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 01/18/2023] Open
Abstract
Septins self-assemble into heteromeric rods and filaments to act as scaffolds and modulate membrane properties. How cells tune the biophysical properties of septin filaments to control filament flexibility and length, and in turn the size, shape, and position of higher-order septin structures, is not well understood. We examined how rod composition and nucleotide availability influence physical properties of septins such as annealing, fragmentation, bundling, and bending. We found that septin complexes have symmetric termini, even when both Shs1 and Cdc11 are coexpressed. The relative proportion of Cdc11/Shs1 septin complexes controls the biophysical properties of filaments and influences the rate of annealing, fragmentation, and filament flexibility. Additionally, the presence and apparent exchange of guanine nucleotide also alters filament length and bundling. An Shs1 mutant that is predicted to alter nucleotide hydrolysis has altered filament length and dynamics in cells and impacts cell morphogenesis. These data show that modulating filament properties through rod composition and nucleotide binding can control formation of septin assemblies that have distinct physical properties and functions.
Collapse
Affiliation(s)
- Anum Khan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, Dartmouth College, Hanover, NH 03755
| | - Jay Newby
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
10
|
Booth EA, Sterling SM, Dovala D, Nogales E, Thorner J. Effects of Bni5 Binding on Septin Filament Organization. J Mol Biol 2016; 428:4962-4980. [PMID: 27806918 DOI: 10.1016/j.jmb.2016.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022]
Abstract
Septins are a protein family found in all eukaryotes (except higher plants) that have roles in membrane remodeling and formation of diffusion barriers and as a scaffold to recruit other proteins. In budding yeast, proper execution of cytokinesis and cell division requires the formation of a collar of circumferential filaments at the bud neck. These filaments are assembled from apolar septin hetero-octamers. Currently, little is known about the mechanisms that control the arrangement and dynamics of septin structures. In this study, we utilized both Förster resonance energy transfer and electron microscopy to analyze the biophysical properties of the septin-binding protein Bni5 and how its association with septin filaments affects their organization. We found that the interaction of Bni5 with the terminal subunit (Cdc11) at the junctions between adjacent hetero-octamers in paired filaments is highly cooperative. Both the C-terminal end of Bni5 and the C-terminal extension of Cdc11 make important contributions to their interaction. Moreover, this binding may stabilize the dimerization of Bni5, which, in turn, forms cross-filament braces that significantly narrow, and impose much more uniform spacing on, the gap between paired filaments.
Collapse
Affiliation(s)
- Elizabeth A Booth
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| | - Sarah M Sterling
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| | - Dustin Dovala
- Program in Microbial Pathogenesis and Host Defense, Department of Microbiology and Immunology, University of California School of Medicine, San Francisco, CA 94143, USA.
| | - Eva Nogales
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA; Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| |
Collapse
|