1
|
Tanaka C, Harada N, Teraoka Y, Urushizaki H, Shinmori Y, Onishi T, Yotsumoto Y, Ito Y, Kitakaze T, Inui T, Murata Y, Inui H, Yamaji R. Mogrol stimulates G-protein-coupled bile acid receptor 1 (GPBAR1/TGR5) and insulin secretion from pancreatic β-cells and alleviates hyperglycemia in mice. Sci Rep 2024; 14:3244. [PMID: 38332164 PMCID: PMC10853268 DOI: 10.1038/s41598-024-53380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Target identification is a crucial step in elucidating the mechanisms by which functional food components exert their functions. Here, we identified the G-protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5) as a target of the triterpenoid mogrol, a class of aglycone mogroside derivative from Siraitia grosvenorii. Mogrol, but not mogrosides, activated cAMP-response element-mediated transcription in a TGR5-dependent manner. Additionally, mogrol selectively activated TGR5 but not the other bile acid-responsive receptors (i.e., farnesoid X receptor, vitamin D receptor, or muscarinic acetylcholine receptor M3). Several amino acids in TGR5 (L71A2.60, W75AECL1, Q77AECL1, R80AECL1, Y89A3.29, F161AECL2, L166A5.39, Y240A6.51, S247A6.58, Y251A6.62, L262A7.35, and L266A7.39) were found to be important for mogrol-induced activation. Mogrol activated insulin secretion under low-glucose conditions in INS-1 pancreatic β-cells, which can be inhibited by a TGR5 inhibitor. Similar effects of mogrol on insulin secretion were observed in the isolated mouse islets. Mogrol administration partially but significantly alleviated hyperglycemia in KKAy diabetic mice by increasing the insulin levels without affecting the β-cell mass or pancreatic insulin content. These results suggest that mogrol stimulates insulin secretion and alleviates hyperglycemia by acting as a TGR5 agonist.
Collapse
Affiliation(s)
- Chisato Tanaka
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan.
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Yoshiaki Teraoka
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Hiroki Urushizaki
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Yoh Shinmori
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Teruaki Onishi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Yusuke Yotsumoto
- Natural Materials Laboratory, Saraya Company, Ltd., 24-12 Tamatecho, Kashiwara, 582-0028, Kashiwara, Osaka, Japan
| | - Yuta Ito
- Natural Materials Laboratory, Saraya Company, Ltd., 24-12 Tamatecho, Kashiwara, 582-0028, Kashiwara, Osaka, Japan
| | - Tomoya Kitakaze
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Takashi Inui
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yuji Murata
- Natural Materials Laboratory, Saraya Company, Ltd., 24-12 Tamatecho, Kashiwara, 582-0028, Kashiwara, Osaka, Japan
| | - Hiroshi Inui
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- Department of Health and Nutrition, Otemae University, Osaka, Osaka, Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- Center for Research and Development of Bioresources, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
2
|
Malyshev AV, Pavshintcev VV, Mitkin NA, Sukhanova IA, Gedzun VR, Zlobin AS, Doronin II, Babkin GA, Sawyer TK. The novel peptide LCGM-10 attenuates metabotropic glutamate receptor 5 activity and demonstrates behavioral effects in animal models. Front Behav Neurosci 2024; 18:1333258. [PMID: 38385004 PMCID: PMC10879279 DOI: 10.3389/fnbeh.2024.1333258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
We employed a structural bioinformatics approach to develop novel peptides with predicted affinity to the binding site for negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGluR5). Primary screening in zebrafish (Danio rerio) revealed a stimulatory effect of two peptides, LCGM-10 and LCGM-15. Target validation studies using calcium ion flux imaging and a luciferase reporter assay confirmed mGluR5 as the target. LCGM-10 showed greater potency than LCGM-15; it was comparable to that of the mGluR5 NAM 2-methyl-6-(phenylethynyl) pyridine (MPEP). Rodent behavioral screening in the open field and elevated plus maze revealed increased locomotor activity in both tests after acute LCGM-10 treatment, supported by further analysis of home cage spontaneous locomotor activity (SLA). The stimulating effect of a single LCGM-10 administration on SLA was evident up to 60 min after administration and was not accompanied by hypokinetic rebound observed for caffeine. According to our results, LCGM-10 has therapeutic potential to treat hypo- and dyskinesias of various etiologies. Further investigation of LCGM-10 effects in the delay discounting model of impulsive choice in rats revealed reduced trait impulsivity after single and chronic administrations, suggesting potential implication for attention deficit hyperactivity disorder, obsessive compulsive disorder, and addictions.
Collapse
|
3
|
Liu J, Wang X, Zhang W, Liao G, Shao Z, Brosius J, Deng C, Lai S, Long E. Evolution of GCGR family ligand-receptor extensive cross-interaction systems suggests a therapeutic direction for hyperglycemia in mammals. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1855-1863. [PMID: 37969012 PMCID: PMC10753361 DOI: 10.3724/abbs.2023133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 11/17/2023] Open
Abstract
Glucose is essential to the physiological processes of vertebrates. Mammalian physiological stability requires a relatively stable blood glucose level (~5 mM), whereas other vertebrates have greater flexibility in regulating blood glucose (0.5-25 mM). GCGR family receptors play an important role in vertebrate glucose regulation. Here, we examine the evolution of the GCGR family ligand-receptor systems in different species. Comparatively, we discover that the conserved sequences among GCG family ligands lead to the non-specific activation of ligands across species. In particular, we observe that glucagon-like peptide 1 receptor (GLP1R), glucagon-like peptide 2 receptor (GLP2R), and glucagon-like receptor (GCGLR, also called GCRPR) are arbitrarily activated by other members of the ligand family in birds. Moreover, we reveal that Gallus gallus GLP2 (gGLP2) effectively activates mammalian GLP1R and improves glucose tolerance in diabetic mice. Our study has important implications for understanding blood glucose stabilization in vertebrates and demonstrates that gGLP2 may be a potential drug for treating type 2 diabetes.
Collapse
Affiliation(s)
- Jian Liu
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjing210023China
| | - Xue Wang
- for Systems GeneticsFrontiers Science Center for Disease-related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Wenli Zhang
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjing210023China
| | - Guangneng Liao
- Sichuan University West China HospitalDepartment of Experimental Animal CenterWest China Hospital of Sichuan UniversityChengdu610041China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research InstituteState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Juergen Brosius
- for Systems GeneticsFrontiers Science Center for Disease-related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjing210023China
- for Systems GeneticsFrontiers Science Center for Disease-related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjing210023China
| | - Enwu Long
- Drug Therapy Key Laboratory of Sichuan ProvinceDepartment of PharmacySichuan Provincial People’s HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
| |
Collapse
|
4
|
Zhao SN, Qi RQ, Gao XH, Chen HD. Sporothrix schenckii regulates macrophage inflammatory responses via the c-JUN-induced Dab2 transcription. Exp Dermatol 2022; 31:1330-1340. [PMID: 35441732 DOI: 10.1111/exd.14580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
Macrophages, which serve as a bridge between innate and adaptive immunity, play an important role in sporotrichosis. Sporothrix schenckii infections can produce immune responses such as macrophage polarization and inflammatory factor secretion. In the early stages of inflammation, the expression of DAB2 in macrophages is increased, which controls the secretion of inflammatory factors and affects the polarization of macrophages. However, the expressions and mechanisms of DAB2 in sporotrichosis are not clear. In this study, we examined the expression of DAB2 and its regulation of inflammatory factors under conditions of Sporothrix schenckii infection. Our results indicated that the Sporothrix schenckii infection increased the expression of DAB2 and revealed a mixed M1/M2-like type of gene expression in BMDMs with the inhibited Il6, Il1β and Arg1, and induced Tnfα, Il10 and Mgl1. The deficiency of Dab2 gene suspended the changes of cytokines. In addition, JNK activity in BMDMs was inhibited by Sporothrix schenckii infection, leading to an increase in c-JUN. We also identified c-JUN as a transcription factor for Dab2 through chromatin immunoprecipitation and luciferase reporter assays. In an in vivo mouse model, sporotrichosis induced skin lesions were accompanied with an upregulation of c-JUN and inhibition of JNK activity, which were in accord with findings from in vitro experiments. Taken together, these findings indicate that in the early stages of Sporothrix schenckii infection there is a promotion of DAB2 expression through the JNK/c-JUN pathway, effects which can then control the expression of inflammatory factors.
Collapse
Affiliation(s)
- S N Zhao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, China.,National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| | - R Q Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, China.,National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| | - X H Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, China.,National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| | - H D Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, China.,National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| |
Collapse
|
5
|
Ding H, Chen W, Chen X. Serum miR-96-5p is a novel and non-invasive marker of acute myocardial infarction associated with coronary artery disease. Bioengineered 2022; 13:3930-3943. [PMID: 35109756 PMCID: PMC8973839 DOI: 10.1080/21655979.2022.2031392] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute myocardial infarction (AMI) is a severe cardiovascular disease. AMI associated with coronary artery disease (AMI-CAD) is a subtype of AMI, composed of AMI patients caused by CAD. This study aimed to evaluate the diagnostic value of miR-96-5p in AMI induced by coronary artery disease. Expression of miR-96-5p and BCL2L13 was evaluated by serum samples and cells utilizing Western blot and RT-qPCR assays. The diagnostic value of miR-96-5p in AMI-CAD was analyzed with a receiver operating characteristic (ROC) curves. The correlation between miR-96-5p and BCL2L13 was examined by Spearman's correlation analysis. The level of oxidative stress and apoptosis were estimated via relative commercial kit, flow cytometry apoptosis assay and TUNEL staining assay. Our study discovered that miR-96-5p was down-regulated while BCL2L13 was up-regulated in patients with AMI-CAD. miR-96-5p was a potential diagnostic parameter, which may help distinguish AMI-CAD patients from healthy controls. In vitro experiments, miR-96-5p expression was down regulated while BCL2L13 was up-regulated in hypoxic cardiomyocytes. After confirming the targeted link of miR-96-5p to BCL2L13 using luciferase reporter and RNA pull down assays, we discovered that miR-96-5p overexpression may restore oxidative stress and cell apoptosis induced by hypoxia treatment in H9c2 cells; meanwhile, co-transfection with BCL2L13 overexpressing plasmid might partly countervail the ameliorative effects of miR-96-5p on oxidative stress and apoptosis. Collectively, miR-96-5p may function as a potential diagnostic biomarker for AMI-CAD patients, and the up-regulation of miR-96-5p would ameliorate AMI-associated cardiomyocytes injury by targeting BCL2L13, hence contributing to the clinical treatment of AMI-CAD.
Collapse
Affiliation(s)
- Hui Ding
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Southeast University, Nanjing, People's Republic of China.,Department of Cardiovascular Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Southeast University, Nanjing, People's Republic of China.,Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Ge Z, Liu H, Ji T, Liu Q, Zhang L, Zhu P, Li L, Zhu L. Long non-coding RNA 00960 promoted the aggressiveness of lung adenocarcinoma via the miR-124a/SphK1 axis. Bioengineered 2022; 13:1276-1287. [PMID: 34738865 PMCID: PMC8805815 DOI: 10.1080/21655979.2021.1996507] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/16/2021] [Indexed: 11/02/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are closely associated with the development of lung adenocarcinoma (LADC). The present study focused on the role of LINC00960 in LADC. miRNA and mRNA expression levels were detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cellular functions were evaluated by MTT, colony formation, and Transwell assays, respectively. LINC00960 Luciferase and RNA pull-down assays were performed to clarify the interaction between miR-124a and LINC00960 or Recombinant Sphingosine Kinase 1 (SphK1). We observed that LINC00960 was overexpressed in LADC tumor tissues and cell lines. LINC00960 knockdown suppressed the proliferation, migration, and invasion of LADC cells. Moreover, LINC00960 sponged miR-124a to inhibit the SphK1/S1P pathway in LADC cells. LINC00960 knockdown markedly reduced the rate of tumor growth. The luciferase reporter assay results demonstrated an interaction between miR-124a and LINC00960 or SphK1. This interaction was confirmed using the RNA pull-down assay. In addition, miR-124a downregulation or SphK1 upregulation reversed the inhibitory effects of LINC00960 knockdown on cellular functions of LADC cells, suggesting that LINC00960 may be a potential therapeutic biomarker for LADC via the miR-124a/SphK1 axis. Accordingly, LINC00960 may be a potential therapeutic biomarker for LADC.
Collapse
Affiliation(s)
- Zhipeng Ge
- Weifang Medical University, Weifang, People’s Republic of China
| | - Haibo Liu
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, P.R. China
| | - Tao Ji
- Chest Endoscopy Minimally Invasive Area, Shandong Provincial Chest Hospital, Jinan, Shandong Province, China
| | - Qiaoling Liu
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, P.R. China
| | - Lulu Zhang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pengchong Zhu
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Liang Li
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Liangming Zhu
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, P.R. China
| |
Collapse
|
7
|
Wang J, Chen Y, Zeng Z, Feng R, Wang Q, Zhang Q, Sun K, Chen AF, Lu Y, Yu Y. HMGA2 contributes to vascular development and sprouting angiogenesis by promoting IGFBP2 production. Exp Cell Res 2021; 408:112831. [PMID: 34547256 DOI: 10.1016/j.yexcr.2021.112831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/28/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Angiogenesis is the process by which new blood vessels form from preexisting vessels and regulates the processes of embryonic development, wound healing and tumorigenesis. HMGA2 is involved in the occurrence of several cancers, but its biological role and the exact downstream genes involved in vascular development and sprouting angiogenesis remain largely unknown. Here, we first found that HMGA2 knockdown in zebrafish embryos resulted in defects of central artery formation. RNA sequencing revealed that IGFBP2 was significantly downregulated by interference with HMGA2, and IGFBP2 overexpression reversed the inhibition of brain vascular development caused by HMGA2 deficiency. In vitro, we further found that HMGA2 knockdown blocked the migration, tube formation and branching of HUVECs. Similarly, IGFBP2 protein overexpression attenuated the impairments induced by HMGA2 deficiency. Moreover, the promotion of angiogenesis by HMGA2 overexpression was verified in a Matrigel plug assay. We next found that HMGA2 bound directly to a region in the IGFBP2 promoter and positively regulated IGFBP2 expression. Interestingly, the mRNA expression levels of HMGA2 and IGFBP2 were increased significantly in the peripheral blood of hemangioma patients, indicating that overexpression of HMGA2 and IGFBP2 results in vessel formation, consistent with the results of the in vivo and in vitro experiments. In summary, our findings demonstrate that HMGA2 promotes central artery formation by modulating angiogenesis via IGFBP2 induction.
Collapse
Affiliation(s)
- Jing Wang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China; Shanghai Children Medicine Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yinghui Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Zhaoxiang Zeng
- Department of Vascular Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Rui Feng
- Department of Vascular Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Qing Wang
- Department of Traditional Chinese Medicine, Xinhua Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Qi Zhang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Kun Sun
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yanan Lu
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Yu Yu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
8
|
Ge Y, Liu W, Yin W, Wang X, Wang J, Zhu X, Xu S. Circular RNA circ_0090231 promotes atherosclerosis in vitro by enhancing NLR family pyrin domain containing 3-mediated pyroptosis of endothelial cells. Bioengineered 2021; 12:10837-10848. [PMID: 34637670 PMCID: PMC8809982 DOI: 10.1080/21655979.2021.1989260] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis (AS) is an inflammatory disease caused by multiple factors. Multiple circRNAs are involved in the development of AS. The present study focusses on delineating the role of circ_0090231 in AS. Human aortic endothelial cells (HAECs) were treated with oxidized low-density lipoprotein (ox-LDL) to construct an in vitro AS model. Real-time quantitative polymerase-chain reaction (RT-qPCR) was used to detect the levels of circ_0090231, IL-1β, and IL-18 transcripts. CircRNA/target gene interactions were predicted using StarBase and TargetScan and confirmed using an RNA pull-down assay and dual-luciferase reporter assay. Further, 3-(4,5)-dimethylthiahiazo(-2)-3,5-diphenytetrazoliumromide (MTT) and lactate dehydrogenase (LDH) release assays were performed to evaluate cell viability and damage in the AS model, respectively. Cell pyroptosis and protein expression were determined using flow cytometry and western blotting respectively. The treatment of HAECs with ox-LDL not only led to significant increase in the levels of circ_0090231 but also resulted in improved cell viability as well as reduced cell injury and pyroptosis as compared to that in non-treated cells. The circ_0090231 was also identified to function as a sponge for miR-635, knockdown of which reverses the effects of circ_0090231 inhibition. Furthermore, our results revealed that levels of NLRP3, a miR-635 target, are not only augmented in the AS model but its overexpression also weakens the miR-635 regulatory effects in the AS development. Taken together, the circ_0090231/miR-635/NLRP3 axis affects the development of AS by regulating cell pyroptosis, thus providing new insights into the mechanism of AS development.
Collapse
Affiliation(s)
- Yishan Ge
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Wenwu Liu
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Wei Yin
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Xuebin Wang
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Jie Wang
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Xiaoqing Zhu
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Shengkai Xu
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
9
|
Chen X, Ma H, Gao Y, Jin Y, Ning W, Hou Y, Su J. Long non-coding RNA AC012668 suppresses non-alcoholic fatty liver disease by competing for microRNA miR-380-5p with lipoprotein-related protein LRP2. Bioengineered 2021; 12:6738-6747. [PMID: 34511037 PMCID: PMC8806601 DOI: 10.1080/21655979.2021.1960463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by high morbidity. Although long noncoding RNAs (lncRNAs) are known to have a role in NAFLD pathogenesis, the identified lncRNA types are limited. In this study, NAFLD models were established in vitro and in vivo using free fatty acid-treated LO2 cells and high-fat diet-fed mice, respectively. Microarray data were downloaded from the Gene Expression Omnibus database, and AC012668 was selected for further analysis. Cell viability and apoptosis were measured using Cell Counting Kit 8 and flow cytometry assays. RNA expression was detected using reverse transcription-quantitative polymerase chain reaction. Triglyceride (TG) content and lipid deposition were detected using enzyme-linked immunosorbent assay and Oil-Red O staining. Western blotting was used to visualize protein expression. Starbase and TargetScan were used to predict the target miRNA and gene, and the predictions were verified through RNA pull-down and luciferase reporter assays. AC012668 expression levels were significantly suppressed in NAFLD models, whereas AC012668 overexpression inhibited lipogenesis-related gene (SCD1, SREBP1, FAS) expression and TG/lipid accumulation in vitro. Subsequently, miR-380-5p was predicted and verified to target AC012668, and its expression was notably increased in the NAFLD cell model. Moreover, transfection of miR-380-5p antagonized the effects of AC012668 on lipid formation and accumulation. LRP2 was confirmed to be the target gene of miR-380-5p and was downregulated in the NAFLD cell model. Silencing LRP2 reversed the effects of the miR-380-5p inhibitor on lipid formation and accumulation. AC012668 inhibited NAFLD progression via the miR-380-5p/LRP2 axis. These findings may provide a novel strategy against NAFLD.
Collapse
Affiliation(s)
- Xiaomeng Chen
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, China
| | - Hong Ma
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yan Gao
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, China
| | - Ye Jin
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, China
| | - Wei Ning
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, China
| | - Yue Hou
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, China
| | - Jianrong Su
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, China
| |
Collapse
|
10
|
Fu D, Zang L, Li Z, Fan C, Jiang H, Men T. Long non-coding RNA CRNDE regulates the growth and migration of prostate cancer cells by targeting microRNA-146a-5p. Bioengineered 2021; 12:2469-2479. [PMID: 34232111 PMCID: PMC8806644 DOI: 10.1080/21655979.2021.1935402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The function of lncRNA CRNDE and its role in prostate cancer (PC) remains unclear. The aim of this study was to determine the expression level of lncRNA CRNDE in PC tissues and to elucidate its role in PC. The expression levels of lncRNA CRNDE were measured by quantitative reverse transcription polymerase chain reaction. The role of lncRNA CRNDE in PC cells was studied using loss-of-function assays in vitro. Cell proliferation, migration, invasion, and apoptosis were assessed via Cell Counting Kit-8, colony formation, flow cytometry, wound healing, and transwell chamber assays. A luciferase reporter assay was used to characterize the interaction between lncRNA CRNDE and miR-146a-5p. In PC tissues, the expression level of lncRNA CRNDE was upregulated. Moreover, knockdown of lncRNA CRNDE suppressed PC cell proliferation and migration and induced apoptosis in vitro. miR-146a-5p was verified as a direct target of lncRNA CRNDE. Moreover, the inhibition of miR-146a-5p partially counteracted the effects of lncRNA CRNDE on PC cell proliferation, migration, and invasion. In conclusion, lncRNA CRNDE may serve as a cancer promoter in PC by targeting miR-146a-5p. Therefore, lncRNA CRNDE could be a promising target for the clinical treatment of PC.
Collapse
Affiliation(s)
- Dewang Fu
- Department of Urology Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li'e Zang
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhaowei Li
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chenghui Fan
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Huamao Jiang
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tongyi Men
- Department of Urology Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
11
|
Genetic Polymorphisms in miR-604A>G, miR-938G>A, miR-1302-3C>T and the Risk of Idiopathic Recurrent Pregnancy Loss. Int J Mol Sci 2021; 22:ijms22116127. [PMID: 34200157 PMCID: PMC8201216 DOI: 10.3390/ijms22116127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study was to investigate whether polymorphisms in five microRNAs (miRNAs), miR-604A>G, miR-608C>G, 631I/D, miR-938G>A, and miR-1302-3C>T, are associated with the risk of idiopathic recurrent pregnancy loss (RPL). Blood samples were collected from 388 patients with idiopathic RPL (at least two consecutive spontaneous abortions) and 227 control participants. We found the miR-604 AG and AG + GG genotypes of miR-604, the miR-938 GA and GA + AA genotypes of miR-938, and the miR-1302-3CT and CT + TT genotypes of miR-1302-3 are less frequent than the wild-type (WT) genotypes, miR-604AA, miR-938GG, and miR-1302-3CC, respectively, in RPL patients. Using allele-combination multifactor dimensionality reduction (MDR) analysis, we found that eight haplotypes conferred by the miR-604/miR-608/miR-631/miR-938/miR-1302-3 allele combination, A-C-I-G-T, A-C-I-A-C, G-C-I-G-C, G-C-I-G-T, G-G-I-G-C, G-G-I-G-T, G-G-I-A-C, G-G-D-G-C, three from the miR-604/miR-631/miR-938/miR-1302-3 allele combination, A-I-G-T, G-I-G-C, G-I-A-T, one from the miR-604/miR-631/miR-1302-3 allele combination, G-I-C, and two from the miR-604/miR-1302-3 allele combination, G-C and G-T, were less frequent in RPL patients, suggesting protective effects (all p < 0.05). We also identified the miR-604A>G and miR-938G>A polymorphisms within the seed sequence of the mature miRNAs and aligned the seed sequences with the 3′UTR of putative target genes, methylenetetrahydrofolate reductase (MTHFR) and gonadotropin-releasing hormone receptor (GnRHR), respectively. We further found that the binding affinities between miR-604/miR-938 and the 3′UTR of their respective target genes (MTHFR, GnRHR) were significantly different for the common (miR-604A, miR-938G) and variant alleles (miR-604G, miR-938A). These results reveal a significant association between the miR-604A>G and miR-938G>A polymorphisms and idiopathic RPL and suggest that miRNAs can affect RPL in Korean women.
Collapse
|
12
|
Krasitskaya VV, Bashmakova EE, Frank LA. Coelenterazine-Dependent Luciferases as a Powerful Analytical Tool for Research and Biomedical Applications. Int J Mol Sci 2020; 21:E7465. [PMID: 33050422 PMCID: PMC7590018 DOI: 10.3390/ijms21207465] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
: The functioning of bioluminescent systems in most of the known marine organisms is based on the oxidation reaction of the same substrate-coelenterazine (CTZ), catalyzed by luciferase. Despite the diversity in structures and the functioning mechanisms, these enzymes can be united into a common group called CTZ-dependent luciferases. Among these, there are two sharply different types of the system organization-Ca2+-regulated photoproteins and luciferases themselves that function in accordance with the classical enzyme-substrate kinetics. Along with deep and comprehensive fundamental research on these systems, approaches and methods of their practical use as highly sensitive reporters in analytics have been developed. The research aiming at the creation of artificial luciferases and synthetic CTZ analogues with new unique properties has led to the development of new experimental analytical methods based on them. The commercial availability of many ready-to-use assay systems based on CTZ-dependent luciferases is also important when choosing them by first-time-users. The development of analytical methods based on these bioluminescent systems is currently booming. The bioluminescent systems under consideration were successfully applied in various biological research areas, which confirms them to be a powerful analytical tool. In this review, we consider the main directions, results, and achievements in research involving these luciferases.
Collapse
Affiliation(s)
- Vasilisa V. Krasitskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
| | - Eugenia E. Bashmakova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
| | - Ludmila A. Frank
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|