1
|
Hossain MI, Myers M, Herath D, Aldhumani AH, Boesger H, Hines JV. 4-Aminoquinolines modulate RNA structure and function: Pharmacophore implications of a conformationally restricted polyamine. Biochem Biophys Res Commun 2023; 644:55-61. [PMID: 36630735 PMCID: PMC10473465 DOI: 10.1016/j.bbrc.2022.12.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
RNA structure plays an important role in regulating cellular function and there is a significant emerging interest in targeting RNA for drug discovery. Here we report the identification of 4-aminoquinolines as modulators of RNA structure and function. Aminoquinolines have a broad range of pharmacological activities, but their specific mechanism of action is often not fully understood. Using electrophoretic mobility shift assays and enzymatic probing we identified 4-aminoquinolines that bind the stem-loop II motif (s2m) of SARS-CoV-2 RNA site-specifically and induce dimerization. Using fluorescence-based RNA binding and T-box riboswitch functional assays we identified that hydroxychloroquine binds the T-box riboswitch antiterminator RNA element and inhibits riboswitch function. Based on its structure and riboswitch dose-response activity we identified that the antagonist activity of hydroxychloroquine is consistent with it being a conformationally restricted analog of the polyamine spermidine. Given the known role that polyamines play in RNA function, the identification of an RNA binding ligand with the pharmacophore of a conformationally restricted polyamine has significant implications for further elucidation of RNA structure-function relationships and RNA-targeted drug discovery.
Collapse
Affiliation(s)
- Md Ismail Hossain
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Mason Myers
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA; Honors Tutorial College, Ohio University, Athens, OH, 45701, USA
| | - Danushika Herath
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Ali H Aldhumani
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Hannah Boesger
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA; Honors Tutorial College, Ohio University, Athens, OH, 45701, USA
| | - Jennifer V Hines
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
2
|
Du J, Dartawan R, Rice W, Gao F, Zhou JH, Sheng J. Fluorescent Platforms for RNA Chemical Biology Research. Genes (Basel) 2022; 13:1348. [PMID: 36011259 PMCID: PMC9407474 DOI: 10.3390/genes13081348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-molecule fluorescence in situ hybridization (smFISH) can detect low abundance RNA at the subcellular level. A relatively new aptamer, Mango, is widely applied to label and track RNA activities in living cells. Molecular beacons (MBs) are valid for quantifying both endogenous and exogenous mRNA and microRNA (miRNA). Covalent binding enzyme labeling fluorescent group with RNA of interest (ROI) partially overcomes the RNA length limitation associated with oligonucleotide synthesis. Forced intercalation (FIT) probes are resistant to nuclease degradation upon binding to target RNA and are used to visualize mRNA and messenger ribonucleoprotein (mRNP) activities. We also summarize the importance of some fluorescence spectroscopic techniques in exploring the function and movement of RNA. Single-molecule fluorescence resonance energy transfer (smFRET) has been employed to investigate the dynamic changes of biomolecules by covalently linking biotin to RNA, and a focus on dye selection increases FRET efficiency. Furthermore, the applications of fluorescence assays in drug discovery and drug delivery have been discussed. Fluorescence imaging can also combine with RNA nanotechnology to target tumors. The invention of novel antibacterial drugs targeting non-coding RNAs (ncRNAs) is also possible with steady-state fluorescence-monitored ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay. More recently, COVID-19 tests using fluorescent clustered regularly interspaced short palindromic repeat (CRISPR) technology have been demonstrated to be efficient and clinically useful. In summary, fluorescence assays have significant applications in both fundamental and clinical research and will facilitate the process of RNA-targeted new drug discovery, therefore deserving further development and updating.
Collapse
Affiliation(s)
| | | | | | | | | | - Jia Sheng
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (J.D.); (R.D.); (W.R.); (F.G.); (J.H.Z.)
| |
Collapse
|
3
|
Armstrong I, Aldhumani AH, Schopis JL, Fang F, Parsons E, Zeng C, Hossain MI, Bergmeier SC, Hines JV. RNA drug discovery: Conformational restriction enhances specific modulation of the T-box riboswitch function. Bioorg Med Chem 2020; 28:115696. [PMID: 33069065 DOI: 10.1016/j.bmc.2020.115696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Antibacterial drug resistance is a global health concern that requires multiple solution approaches including development of new antibacterial compounds acting at novel targets. Targeting regulatory RNA is an emerging area of drug discovery. The T-box riboswitch is a regulatory RNA mechanism that controls gene expression in Gram-positive bacteria and is an exceptional, novel target for antibacterial drug design. We report the design, synthesis and activity of a series of conformationally restricted oxazolidinone-triazole compounds targeting the highly conserved antiterminator RNA element of the T-box riboswitch. Computational binding energies correlated with experimentally-derived Kd values indicating the predictive capabilities for docking studies within this series of compounds. The conformationally restricted compounds specifically inhibited T-box riboswitch function and not overall transcription. Complex disruption, computational docking and RNA binding specificity data indicate that inhibition may result from ligand binding to an allosteric site. These results highlight the importance of both ligand affinity and RNA conformational outcome for targeted RNA drug design.
Collapse
Affiliation(s)
- Ian Armstrong
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Ali H Aldhumani
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Jia L Schopis
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Fang Fang
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Eric Parsons
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Chunxi Zeng
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Md Ismail Hossain
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Stephen C Bergmeier
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA; Edison Biotechnology Institute, Konneker Laboratories, Ohio University, Athens, OH 45701, USA
| | - Jennifer V Hines
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
4
|
Li XD, Liu L, Cheng L. Identification of thienopyridine carboxamides as selective binders of HIV-1 trans Activation Response (TAR) and Rev Response Element (RRE) RNAs. Org Biomol Chem 2019; 16:9191-9196. [PMID: 30465585 DOI: 10.1039/c8ob02753f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Small organic molecules that can selectively bind to RNA with specificity are relatively rare. Here we report the synthesis, biochemical and structural studies of thienopyridine carboxamide derivatives with the capacity of selectively recognizing and binding with HIV-1 TAR and RRE RNAs that are essential elements for viral replication.
Collapse
Affiliation(s)
- Xue-Dong Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | |
Collapse
|
5
|
An in vivo high-throughput screening for riboswitch ligands using a reverse reporter gene system. Sci Rep 2017; 7:7732. [PMID: 28798404 PMCID: PMC5552694 DOI: 10.1038/s41598-017-07870-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/04/2017] [Indexed: 11/08/2022] Open
Abstract
Riboswitches are bacterial RNA elements that regulate gene expression in response to metabolite or ion abundance and are considered as potential drug targets. In recent years a number of methods to find non-natural riboswitch ligands have been described. Here we report a high-throughput in vivo screening system that allows identifying OFF-riboswitch modulators in a 384 well bioluminescence assay format. We use a reverse reporter gene setup in Bacillus subtilis, consisting of a primary screening assay, a secondary assay as well as counter assays to detect compounds in a library of 1,280 molecules that act on the guanine-responsive xpt riboswitch from B. anthracis. With this in vivo high-throughput approach we identified several hit compounds and could validate the impact of one of them on riboswitch-mediated gene regulation, albeit this might not be due to direct binding to the riboswitch. However, our data demonstrate the capability of our screening assay for bigger high-throughput screening campaigns. Furthermore, the screening system described here can not only be generally employed to detect non-natural ligands or compounds influencing riboswitches acting as genetic OFF switches, but it can also be used to investigate natural ligands of orphan OFF-riboswitches.
Collapse
|
6
|
Mehdizadeh Aghdam E, Hejazi MS, Barzegar A. Riboswitches: From living biosensors to novel targets of antibiotics. Gene 2016; 592:244-59. [PMID: 27432066 DOI: 10.1016/j.gene.2016.07.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022]
Abstract
Riboswitches are generally located in 5'-UTR region of mRNAs and specifically bind small ligands. Following ligand binding, gene expression is controlled mostly by transcription termination, translation inhibition or mRNA degradation processes. More than 30 classes of known riboswitches have been identified by now. Most riboswitches consist of an aptamer domain and an expression platform. The aptamer domain of each class of riboswitch is a conserved structure and stabilizes specific structures of the expression platforms through binding to specific compounds. In this review, we are highlighting most aspects of riboswitch research including the novel riboswitch discoveries, routine methods for discovering and investigating riboswitches along with newly discovered classes and mechanistic principles of riboswitch-mediated gene expression control. Moreover, we will give an overview about the potential of riboswitches as therapeutic targets for antibiotic design and also their utilization as biosensors for molecular detection.
Collapse
Affiliation(s)
- Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran; The School of Advanced Biomedical Sciences (SABS), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Liu J, Zeng C, Hogan V, Zhou S, Monwar MM, Hines JV. Identification of Spermidine Binding Site in T-box Riboswitch Antiterminator RNA. Chem Biol Drug Des 2015; 87:182-9. [PMID: 26348362 DOI: 10.1111/cbdd.12660] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/24/2015] [Accepted: 08/14/2015] [Indexed: 01/08/2023]
Abstract
The T-box transcription antitermination riboswitch controls bacterial gene expression by structurally responding to uncharged, cognate tRNA. Previous studies indicated that cofactors, such as the polyamine spermidine, might serve a specific functional role in enhancing riboswitch efficacy. As riboswitch function depends on key RNA structural changes involving the antiterminator element, the interaction of spermidine with the T-box riboswitch antiterminator element was investigated. Spermidine binds antiterminator model RNA with high affinity (micromolar Kd ) based on isothermal titration calorimetry and fluorescence-monitored binding assays. NMR titration studies, molecular modeling, and inline and enzymatic probing studies indicate that spermidine binds at the 3' portion of the highly conserved seven-nucleotide bulge in the antiterminator. Together, these results support the conclusion that spermidine binds the T-box antiterminator RNA preferentially in a location important for antiterminator function. The implications of these findings are significant both for better understanding of the T-box riboswitch mechanism and for antiterminator-targeted drug discovery efforts.
Collapse
Affiliation(s)
- Jia Liu
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Chunxi Zeng
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Vivian Hogan
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Shu Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Md Masud Monwar
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Jennifer V Hines
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
8
|
Abstract
The T box riboswitch is an intriguing potential target for antibacterial drug discovery. Found primarily in Gram-positive bacteria, the riboswitch regulates gene expression by selectively responding to uncharged tRNA to control transcription readthrough. Polyamines and molecular crowding are known to specifically affect RNA function, but their effect on T box riboswitch efficacy and tRNA affinity have not been fully characterized. A fluorescence-monitored in vitro transcription assay was developed to readily quantify these molecular interactions and to provide a moderate-throughput functional assay for a comprehensive drug discovery screening cascade. The polyamine spermidine specifically enhanced T box riboswitch readthrough efficacy with an EC50 = 0.58 mM independent of tRNA binding. Molecular crowding, simulated by the addition of polyethylene glycol, had no effect on tRNA affinity for the riboswitch, but did reduce the efficacy of tRNA-induced readthrough. These results indicate that the T box riboswitch tRNA affinity and readthrough efficacy are intricately modulated by environmental factors.
Collapse
|