1
|
Munteanu C, Galaction AI, Poștaru M, Rotariu M, Turnea M, Blendea CD. Hydrogen Sulfide Modulation of Matrix Metalloproteinases and CD147/EMMPRIN: Mechanistic Pathways and Impact on Atherosclerosis Progression. Biomedicines 2024; 12:1951. [PMID: 39335465 PMCID: PMC11429404 DOI: 10.3390/biomedicines12091951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory condition marked by endothelial dysfunction, lipid accumulation, inflammatory cell infiltration, and extracellular matrix (ECM) remodeling within arterial walls, leading to plaque formation and potential cardiovascular events. Key players in ECM remodeling and inflammation are matrix metalloproteinases (MMPs) and CD147/EMMPRIN, a cell surface glycoprotein expressed on endothelial cells, vascular smooth muscle cells (VSMCs), and immune cells, that regulates MMP activity. Hydrogen sulfide (H₂S), a gaseous signaling molecule, has emerged as a significant modulator of these processes including oxidative stress mitigation, inflammation reduction, and vascular remodeling. This systematic review investigates the mechanistic pathways through which H₂S influences MMPs and CD147/EMMPRIN and assesses its impact on atherosclerosis progression. A comprehensive literature search was conducted across PubMed, Scopus, and Web of Science databases, focusing on studies examining H₂S modulation of MMPs and CD147/EMMPRIN in atherosclerosis contexts. Findings indicate that H₂S modulates MMP expression and activity through transcriptional regulation and post-translational modifications, including S-sulfhydration. By mitigating oxidative stress, H₂S reduces MMP activation, contributing to plaque stability and vascular remodeling. H₂S also downregulates CD147/EMMPRIN expression via transcriptional pathways, diminishing inflammatory responses and vascular cellular proliferation within plaques. The dual regulatory role of H₂S in inhibiting MMP activity and downregulating CD147 suggests its potential as a therapeutic agent in stabilizing atherosclerotic plaques and mitigating inflammation. Further research is warranted to elucidate the precise molecular mechanisms and to explore H₂S-based therapies for clinical application in atherosclerosis.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Corneliu Dan Blendea
- Department of Medical-Clinical Disciplines, General Surgery, Faculty of Medicine, "Titu Maiorescu" University of Bucharest, 0400511 Bucharest, Romania
| |
Collapse
|
2
|
Mu F, Liu C, Huo H, Zeng X, Wang F. The relationship between Sjögren's syndrome and recurrent pregnancy loss: a bioinformatics analysis. Reprod Biomed Online 2024; 49:104363. [PMID: 39299134 DOI: 10.1016/j.rbmo.2024.104363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 09/22/2024]
Abstract
RESEARCH QUESTION As Sjögren's syndrome is an autoimmune disease and an essential factor in recurrent pregnancy loss (RPL), are there gene-related relationships between the pathogenesis of Sjögren's syndrome and RPL? DESIGN The gene datasets for Sjögren's syndrome and RPL were obtained from the Gene Expression Omnibus database, and the co-expression modules and shared differentially expressed genes were identified through weighted gene co-expression network analysis (WGCNA) and limma analysis based on sample size. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analyses were applied to reveal the hidden biological pathways. Additionally, shared hub gene identification, gene set enrichment analysis, association of the hub gene with ferroptosis and immunity, drug sensitivity analysis, single-cell RNA sequencing analysis, and construction of the competing endogenous RNA (ceRNA) network were conducted. RESULTS By intersecting the genes from WGCNA and limma analysis, one shared hub gene (KCNN3) was derived, exhibiting up-regulation in Sjögren's syndrome and RPL. There was a positive relationship between KCNN3 and the immune-related gene TLR2. The ceRNA network revealed that XIST was the most shared long non-coding RNA, which may bind competitively with eight microRNA to regulate the expression of KCNN3. Forty-eight drugs were found to be strongly associated with KCNN3 expression, including estramustine and cyclosporine. Moreover, KCNN3 exhibited high expression in RPL endothelial cells of villous tissue. CONCLUSIONS This is one of the first studies to reveal that Sjögren's syndrome shares common biological pathways with RPL. KCNN3 was identified as the hub gene associated with Sjögren's syndrome and RPL, and may be a new target for mechanistic studies on Sjögren's syndrome and RPL.
Collapse
Affiliation(s)
- Fangxiang Mu
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Cai Liu
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Huyan Huo
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Xianghui Zeng
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Fang Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
3
|
Luo X, Shen Y, Huang W, Bao Y, Mo J, Yao L, Yuan L. Blocking CD47-SIRPα Signal Axis as Promising Immunotherapy in Ovarian Cancer. Cancer Control 2023; 30:10732748231159706. [PMID: 36826231 PMCID: PMC9969460 DOI: 10.1177/10732748231159706] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Among the three primary gynecological malignancies, ovarian cancer has the lowest incidence but the worst prognosis. Because of the poor prognosis of ovarian cancer patients treated with existing treatments, immunotherapy is emerging as a potentially ideal alternative to surgery, chemotherapy, and targeted therapy. Among immunotherapies, immune checkpoint inhibitors have been the most thoroughly studied, and many drugs have been successfully used in the clinic. CD47, a novel immune checkpoint, provides insights into ovarian cancer immunotherapy. This review highlights the mechanisms of tumor immune evasion via CD47-mediated inhibition of phagocytosis and provides a comprehensive insight into the progress of the relevant targeted agents in ovarian cancer.
Collapse
Affiliation(s)
- Xukai Luo
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of
Fudan University, Shanghai, China
| | - Yini Shen
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of
Fudan University, Shanghai, China
| | - Wu Huang
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of
Fudan University, Shanghai, China
| | - Yiting Bao
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of
Fudan University, Shanghai, China
| | - Jiahang Mo
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of
Fudan University, Shanghai, China
| | - Liangqing Yao
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of
Fudan University, Shanghai, China
| | - Lei Yuan
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of
Fudan University, Shanghai, China,Lei Yuan, MD, Obstetrics and Gynecology
Hospital, Fudan University, 419 Fangxie Road, Huangpu District, Shanghai 200011,
China.
| |
Collapse
|
4
|
Opoku‐Damoah Y, Zhang R, Ta HT, Xu ZP. Therapeutic gas-releasing nanomedicines with controlled release: Advances and perspectives. EXPLORATION (BEIJING, CHINA) 2022; 2:20210181. [PMID: 37325503 PMCID: PMC10190986 DOI: 10.1002/exp.20210181] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticle-based drug delivery has become one of the most popular approaches for maximising drug therapeutic potentials. With the notable improvements, a greater challenge hinges on the formulation of gasotransmitters with unique challenges that are not met in liquid and solid active ingredients. Gas molecules upon release from formulations for therapeutic purposes have not really been discussed extensively. Herein, we take a critical look at four key gasotransmitters, that is, carbon monoxide (CO), nitric oxide (NO), hydrogen sulphide (H2S) and sulphur dioxide (SO2), their possible modification into prodrugs known as gas-releasing molecules (GRMs), and their release from GRMs. Different nanosystems and their mediatory roles for efficient shuttling, targeting and release of these therapeutic gases are also reviewed extensively. This review thoroughly looks at the diverse ways in which these GRM prodrugs in delivery nanosystems are designed to respond to intrinsic and extrinsic stimuli for sustained release. In this review, we seek to provide a succinct summary for the development of therapeutic gases into potent prodrugs that can be adapted in nanomedicine for potential clinical use.
Collapse
Affiliation(s)
- Yaw Opoku‐Damoah
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Run Zhang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Hang T. Ta
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
- School of Environment and ScienceGriffith UniversityBrisbaneQueenslandAustralia
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQueenslandAustralia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
5
|
Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biol 2022; 53:102331. [PMID: 35618601 PMCID: PMC9168780 DOI: 10.1016/j.redox.2022.102331] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The expression of the reverse transsulfuration enzyme cystathionine-β-synthase (CBS) is markedly increased in many forms of cancer, including colorectal, ovarian, lung, breast and kidney, while in other cancers (liver cancer and glioma) it becomes downregulated. According to the clinical database data in high-CBS-expressor cancers (e.g. colon or ovarian cancer), high CBS expression typically predicts lower survival, while in the low-CBS-expressor cancers (e.g. liver cancer), low CBS expression is associated with lower survival. In the high-CBS expressing tumor cells, CBS, and its product hydrogen sulfide (H2S) serves as a bioenergetic, proliferative, cytoprotective and stemness factor; it also supports angiogenesis and epithelial-to-mesenchymal transition in the cancer microenvironment. The current article reviews the various tumor-cell-supporting roles of the CBS/H2S axis in high-CBS expressor cancers and overviews the anticancer effects of CBS silencing and pharmacological CBS inhibition in various cancer models in vitro and in vivo; it also outlines potential approaches for biomarker identification, to support future targeted cancer therapies based on pharmacological CBS inhibition.
Collapse
|
6
|
Peng Q, Zhao B, Lin J, Liu H, Zhou R, Lan D, Yao C, Cong S, Tao S, Zhu Y, Wang R, Qi S. SPRC Suppresses Experimental Periodontitis by Modulating Th17/Treg Imbalance. Front Bioeng Biotechnol 2022; 9:737334. [PMID: 35087796 PMCID: PMC8787365 DOI: 10.3389/fbioe.2021.737334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
Object: The aims of the study were to explore the protective effects of S-propargyl-cysteine (SPRC) on periodontitis and to determine the underlying mechanisms. Methods: A rat periodontitis model was constructed by injecting LPS and SPRC (0, 25, and 50 mg/kg/d) was administered intraperitoneally. H2S and CSE level were detected. The alveolar bone level was evaluated by micro-CT, HE staining and methylene blue staining analysis. Inflammation-related factors, Treg and Th17 cells were detected by immunohistochemistry, RT-PCR, immunofluorescence, Western blot and flow cytometry. Phosphorylation levels of ERK1/2 and CREB were analysed. Results: The administration of SPRC significantly increased the expression of CSE in the gingival tissue and the concentration of endogenous H2S in the peripheral blood. Simultaneously, SPRC significantly inhibited the resorption of alveolar bone based on the H&E staining, micro-CT and methylene blue staining analysis. Compared with the periodontitis group, the levels of IL-17A, IL-10 were downregulated and IL-6,TGF-β1 were upregulated in the SPRC groups. In the SPRC group, the percentage of TH17 cells and the expression of ROR-γt were downregulated, while the percentage of Tregs and the expression of Foxp3 were upregulated accompanied with inhibition of phosphorylation ERK1/2 and CREB. Conclusion: SPRC can prevent the progression of periodontitis by regulating the Th17/Treg balance by inhibition of the ERK/CREB signalling pathway.
Collapse
Affiliation(s)
- Qian Peng
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Bingkun Zhao
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Lin
- Pharmacy Department, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Haixia Liu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rong Zhou
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongmei Lan
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Chao Yao
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Shaohua Cong
- Jiading Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shen Tao
- The First People's Hospital of KunShan, Kunshan, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Raorao Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Prothodontics, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Jurkowska H, Wróbel M, Jasek-Gajda E, Rydz L. Sulfurtransferases and Cystathionine Beta-Synthase Expression in Different Human Leukemia Cell Lines. Biomolecules 2022; 12:148. [PMID: 35204649 PMCID: PMC8961552 DOI: 10.3390/biom12020148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/17/2022] Open
Abstract
The studies concerned the expression of sulfurtransferases and cystathionine beta-synthase in six human leukemia cell lines: B cell acute lymphoblastic leukemia-B-ALL (REH cells), T cell acute lymphoblastic leukemia-T-ALL (DND-41 and MOLT-4 cells), acute myeloid leukemia-AML (MV4-11 and MOLM-14 cells), and chronic myeloid leukemia-CML (K562 cells). Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis were performed to determine the expression of thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, gamma-cystathionase, and cystathionine beta-synthase on the mRNA and protein level. Interestingly, we found significant differences in the mRNA and protein levels of sulfurtransferases and cystathionine beta-synthase in the studied leukemia cells. The obtained results may contribute to elucidating the significance of the differences between the studied cells in the field of sulfur compound metabolism and finding new promising ways to inhibit the proliferation of various types of leukemic cells by modulating the activity of sulfurtransferases, cystathionine beta-synthase, and, consequently, the change of intracellular level of sulfane sulfur as well as H2S and reactive oxygen species production.
Collapse
Affiliation(s)
- Halina Jurkowska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (M.W.); (L.R.)
| | - Maria Wróbel
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (M.W.); (L.R.)
| | - Ewa Jasek-Gajda
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland;
| | - Leszek Rydz
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (M.W.); (L.R.)
| |
Collapse
|
8
|
Liu Z, Wen J, Hu F, Wang J, Hu C, Zhang W. Thrombospondin-1 induced programmed death-ligand 1-mediated immunosuppression by activating the STAT3 pathway in osteosarcoma. Cancer Sci 2021; 113:432-445. [PMID: 34927311 PMCID: PMC8819289 DOI: 10.1111/cas.15237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Abstract
Thrombospondin‐1 (TSP1) is generally assumed to suppress the growth of osteosarcoma through inhibiting angiogenesis; however, it is unclear whether TSP1 could affect the antitumor immunity against osteosarcoma. We aimed to explore the immune‐related tumor‐promoting effects of TSP1 and decipher its underlying mechanism. First, we identified that TSP1 regulated programmed death‐ligand 1 (PD‐L1) expression, which was related to the CD8+ T cells anergy in osteosarcoma cells. The exact role of PD‐L1 in the immunosuppressive effect of TSP1 was then further confirmed by the addition of the PD‐L1 neutralizing Ab. With the addition of PD‐L1 neutralizing Abs during cocultivation, the inhibition of CD8+ T cells was abolished to a certain extent. Further mechanistic investigations showed that TSP1‐induced PD‐L1 upregulation was achieved by activation of the signal transducer and activator of transcription 3 (STAT3) pathway. In vivo experiments also indicated that TSP1 overexpression could promote the growth of primary lesions, whereas TSP1 knockdown effectively inhibits the growth of the primary lesion as well as lung metastasis by restoring the antitumor immunity. Thrombospondin‐1 knockdown combined with PD‐L1 neutralizing Ab achieved a more pronounced antitumor effect. Taken together, our study showed that TSP1 upregulates PD‐L1 by activating the STAT3 pathway and, therefore, impairs the antitumor immunity against osteosarcoma.
Collapse
Affiliation(s)
- Zhuochao Liu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junxiang Wen
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangqiong Hu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Wang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanzhen Hu
- Department of Orthopaedic Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Weibin Zhang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Targeting Ovarian Carcinoma with TSP-1:CD47 Antagonist TAX2 Activates Anti-Tumor Immunity. Cancers (Basel) 2021; 13:cancers13195019. [PMID: 34638503 PMCID: PMC8508526 DOI: 10.3390/cancers13195019] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
TAX2 peptide is a cyclic peptide that acts as an orthosteric antagonist for thrombospondin-1 (TSP-1) interaction with CD47. TAX2 was first described for its anti-angiogenic activities and showed anti-cancer efficacy in numerous preclinical models. Here, we aimed at providing an extensive molecular characterization of TAX2 mode of action, while evaluating its potential in ovarian cancer therapy. Multidisciplinary approaches were used to qualify a TAX2 drug candidate in terms of stability, solubility and potency. Then, efficacy studies, together with benchmark experiments, were performed in relevant mouse models of ovarian carcinoma. TAX2 peptide appears to be stable and soluble in clinically relevant solvents, while displaying a favorable safety profile. Moreover, clinical data mining allowed for the identification of TSP-1 as a relevant pharmacological target in ovarian cancer. In mice, TAX2 therapy inhibits ovarian tumor growth and metastatic dissemination, while activating anti-cancer adaptive immunity. Interestingly, TAX2 also synergizes when administered in combination with anti-PD-1 immune checkpoint inhibitiors. Altogether, our data expose TAX2 as an optimized candidate with advanced preclinical characterization. Using relevant syngeneic ovarian carcinoma models, we highlighted TAX2's ability to convert poorly immunogenic tumors into ones displaying effective anti-tumor T-cell immunity.
Collapse
|
10
|
Li M, Mao J, Zhu Y. New Therapeutic Approaches Using Hydrogen Sulfide Donors in Inflammation and Immune Response. Antioxid Redox Signal 2021; 35:341-356. [PMID: 33789440 DOI: 10.1089/ars.2020.8249] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Inflammation and immune response are associated with many pathological disorders, including rheumatoid arthritis, lupus, heart failure, and cancer(s). In recent times, important roles of hydrogen sulfide (H2S) have been evidenced by researchers in inflammatory responses, as well as immunomodulatory effects in several disease models. Recent Advances: Numerous biological targets, including cytochrome c oxidase, various kinases, enzymes involved in epigenetic changes, transcription factors, namely nuclear factor kappa B and nuclear factor erythroid 2-related factor 2, and several membrane ion channels, are shown to be sensitive to H2S and have been widely investigated in various preclinical models. Critical Issues: A complete understanding of the effects of H2S in inflammatory and immune response is vital in the development of novel H2S generating therapeutics. In this review, the biological effects and pharmacological properties of H2S in inflammation and immune response are addressed. The review also covers some of the novel H2S releasing prodrugs developed in recent years as tools to study this fascinating molecule. Future Directions: H2S plays important roles in inflammation and immunity-related processes. Future researches are needed to further assess the immunomodulatory effects of H2S and to assist in the design of more efficient H2S carrier systems, or drug formulations, for the management of immune-related conditions in humans. Antioxid. Redox Signal. 35, 341-356.
Collapse
Affiliation(s)
- Meng Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jianchun Mao
- Department of Rheumatology, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yizhun Zhu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- School of Pharmacy, Macau University of Science and Technology, Macau, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Hydrogen Sulfide and the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:99-128. [PMID: 34302690 DOI: 10.1007/978-981-16-0991-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is the "third gasotransmitter" recognized alongside nitric oxide (NO) and carbon monoxide (CO). H2S exhibits an array of biological effects in mammalian cells as revealed by studies showing important roles in the cardiovascular system, in cell signalling processes, post-translational modifications and in the immune system. Regarding the latter, using pharmacological and genetic approaches scientists have shown this molecule to have both pro- and anti-inflammatory effects in mammalian systems. The anti-inflammatory effects of H2S appeared to be due to its inhibitory action on the nuclear factor kappa beta signalling pathway; NF-kB representing a transcription factor involved in the regulation pro-inflammatory mediators like nitric oxide, prostaglandins, and cytokines. In contrast, results from several animal model describe a more complicated picture and report on pro-inflammatory effects linked to exposure to this molecule; linked to dosage used and point of administration of this molecule. Overall, roles for H2S in several inflammatory diseases spanning arthritis, atherosclerosis, sepsis, and asthma have been described by researchers. In light this work fascinating research, this chapter will cover H2S biology and its many roles in the immune system.
Collapse
|
12
|
Lumican delays melanoma growth in mice and drives tumor molecular assembly as well as response to matrix-targeted TAX2 therapeutic peptide. Sci Rep 2017; 7:7700. [PMID: 28794454 PMCID: PMC5550434 DOI: 10.1038/s41598-017-07043-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Lumican is a small leucine-rich proteoglycan (SLRP) being known as a key regulator of collagen fibrillogenesis. However, little attention has been given so far in studying its influence on tumor-associated matrix architecture. Here, we investigate the role of host lumican on tumor matrix organization as well as on disease progression considering an immunocompetent model of melanoma implanted in Lum -/- vs. wild type syngeneic mice. Conjointly, lumican impact on tumor response to matrix-targeted therapy was evaluated considering a previously validated peptide, namely TAX2, that targets matricellular thrombospondin-1. Analysis of available genomics and proteomics databases for melanoma first established a correlation between lumican expression and patient outcome. In the B16 melanoma allograft model, endogenous lumican inhibits tumor growth and modulates response to TAX2 peptide. Indeed, IHC analyses revealed that lumican deficiency impacts intratumoral distribution of matricellular proteins, growth factor and stromal cells. Besides, innovative imaging approaches helped demonstrating that lumican host expression drives biochemical heterogeneity of s.c. tumors, while modulating intratumoral collagen deposition as well as organization. Altogether, the results obtained present lumican as a strong endogenous inhibitor of tumor growth, while identifying for the first time this proteoglycan as a major driver of tumor matrix coherent assembly.
Collapse
|
13
|
Hao R, Du H, Guo L, Tian F, An N, Yang T, Wang C, Wang B, Zhou Z. Identification of dysregulated genes in rheumatoid arthritis based on bioinformatics analysis. PeerJ 2017; 5:e3078. [PMID: 28316886 PMCID: PMC5356478 DOI: 10.7717/peerj.3078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/09/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic auto-inflammatory disorder of joints. The present study aimed to identify the key genes in RA for better understanding the underlying mechanisms of RA. METHODS The integrated analysis of expression profiling was conducted to identify differentially expressed genes (DEGs) in RA. Moreover, functional annotation, protein-protein interaction (PPI) network and transcription factor (TF) regulatory network construction were applied for exploring the potential biological roles of DEGs in RA. In addition, the expression level of identified candidate DEGs was preliminarily detected in peripheral blood cells of RA patients in the GSE17755 dataset. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to validate the expression levels of identified DEGs in RA. RESULTS A total of 378 DEGs, including 202 up- and 176 down-regulated genes, were identified in synovial tissues of RA patients compared with healthy controls. DEGs were significantly enriched in axon guidance, RNA transport and MAPK signaling pathway. RBFOX2, LCK and SERBP1 were the hub proteins in the PPI network. In the TF-target gene network, RBFOX2, POU6F1, WIPF1 and PFKFB3 had the high connectivity with TFs. The expression status of 11 candidate DEGs was detected in GSE17755, the expression levels of MAT2A and NSA2 were significantly down-regulated and CD47 had the up-regulated tendency in peripheral blood cells of patients with RA compared with healthy individuals. qRT-PCR results of MAT2A, NSA2, CD47 were compatible with our bioinformatics analyses. DISCUSSION Our study might provide valuable information for exploring the pathogenesis mechanism of RA and identifying the potential biomarkers for RA diagnosis.
Collapse
Affiliation(s)
- Ruihu Hao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Haiwei Du
- Department of Bioinformatics, Beijing Medintell Biomed Co., Ltd, Beijing, China
| | - Lin Guo
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Fengde Tian
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ning An
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Tiejun Yang
- Department of Orthopedics, Affiliated Hospital of BeiHua University, Jilin, China
| | - Changcheng Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Bo Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zihao Zhou
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
14
|
Yang R, Liu Y, Shi S. Hydrogen Sulfide Regulates Homeostasis of Mesenchymal Stem Cells and Regulatory T Cells. J Dent Res 2016; 95:1445-1451. [PMID: 27432317 DOI: 10.1177/0022034516659041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hydrogen sulfide (H2S) has long been known as a toxic gas. However, recently accumulated evidence suggests that H2S contributes to a variety of physiologic and pathologic processes. Endogenous H2S production is regulated by multiple enzymes that are differentially expressed in the cardiovascular, neuronal, immune, renal, respiratory, gastrointestinal, reproductive, liver, and endocrine systems. Alteration of H2S metabolism may affect multiple signaling pathways and tissue homeostasis. The growing number of diverse targets for which H2S serves as a gasotransmitter has been extensively reviewed elsewhere. In this review, the authors discuss current emerging evidence that H2S regulates mesenchymal stem cell and T-cell functions.
Collapse
Affiliation(s)
- R Yang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA.,Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - S Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
15
|
Veeranki S, Gandhapudi SK, Tyagi SC. Interactions of hyperhomocysteinemia and T cell immunity in causation of hypertension. Can J Physiol Pharmacol 2016; 95:239-246. [PMID: 27398734 DOI: 10.1139/cjpp-2015-0568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular diseases (CVD), there is a debate on whether HHcy is a risk factor or just a biomarker. Interestingly, homocysteine lowering strategies in humans had very little effect on reducing the cardiovascular risk, as compared with animals; this may suggest heterogeneity in human population and epigenetic alterations. Moreover, there are only few studies that suggest the idea that HHcy contributes to CVD in the presence of other risk factors such as inflammation, a known risk factor for CVD. Elevated levels of homocysteine have been shown to contribute to inflammation. Here, we highlight possible relationships between homocysteine, T cell immunity, and hypertension, and summarize the evidence that suggested these factors act together in increasing the risk for CVD. In light of this new evidence, we further propose that there is a need for evaluation of the causes of HHcy, defective remethylation or defective transsulfuration, which may differentially modulate hypertension progression, not just the homocysteine levels.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA.,Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA
| | - Siva K Gandhapudi
- Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA.,Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA.,Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA
| |
Collapse
|
16
|
Jeanne A, Schneider C, Martiny L, Dedieu S. Original insights on thrombospondin-1-related antireceptor strategies in cancer. Front Pharmacol 2015; 6:252. [PMID: 26578962 PMCID: PMC4625054 DOI: 10.3389/fphar.2015.00252] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/15/2015] [Indexed: 01/04/2023] Open
Abstract
Thrombospondin-1 (TSP-1) is a large matricellular glycoprotein known to be overexpressed within tumor stroma in several cancer types. While mainly considered as an endogenous angiogenesis inhibitor, TSP-1 exhibits multifaceted functionalities in a tumor context depending both on TSP-1 concentration as well as differential receptor expression by cancer cells and on tumor-associated stromal cells. Besides, the complex modular structure of TSP-1 along with the wide variety of its soluble ligands and membrane receptors considerably increases the complexity of therapeutically targeting interactions involving TSP-1 ligation of cell-surface receptors. Despite the pleiotropic nature of TSP-1, many different antireceptor strategies have been developed giving promising results in preclinical models. However, transition to clinical trials often led to nuanced outcomes mainly due to frequent severe adverse effects. In this review, we will first expose the intricate and even sometimes opposite effects of TSP-1-related signaling on tumor progression by paying particular attention to modulation of angiogenesis and tumor immunity. Then, we will provide an overview of current developments and prospects by focusing particularly on the cell-surface molecules CD47 and CD36 that function as TSP-1 receptors; including antibody-based approaches, therapeutic gene modulation and the use of peptidomimetics. Finally, we will discuss original approaches specifically targeting TSP-1 domains, as well as innovative combination strategies with a view to producing an overall anticancer response.
Collapse
Affiliation(s)
- Albin Jeanne
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France ; SATT Nord Lille, France
| | - Christophe Schneider
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France
| | - Laurent Martiny
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France
| | - Stéphane Dedieu
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France
| |
Collapse
|