1
|
Kalinichenko L, Kornhuber J, Sinning S, Haase J, Müller CP. Serotonin Signaling through Lipid Membranes. ACS Chem Neurosci 2024; 15:1298-1320. [PMID: 38499042 PMCID: PMC10995955 DOI: 10.1021/acschemneuro.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Serotonin (5-HT) is a vital modulatory neurotransmitter responsible for regulating most behaviors in the brain. An inefficient 5-HT synaptic function is often linked to various mental disorders. Primarily, membrane proteins controlling the expression and activity of 5-HT synthesis, storage, release, receptor activation, and inactivation are critical to 5-HT signaling in synaptic and extra-synaptic sites. Moreover, these signals represent information transmission across membranes. Although the lipid membrane environment is often viewed as fairly stable, emerging research suggests significant functional lipid-protein interactions with many synaptic 5-HT proteins. These protein-lipid interactions extend to almost all the primary lipid classes that form the plasma membrane. Collectively, these lipid classes and lipid-protein interactions affect 5-HT synaptic efficacy at the synapse. The highly dynamic lipid composition of synaptic membranes suggests that these lipids and their interactions with proteins may contribute to the plasticity of the 5-HT synapse. Therefore, this broader protein-lipid model of the 5-HT synapse necessitates a reconsideration of 5-HT's role in various associated mental disorders.
Collapse
Affiliation(s)
- Liubov
S. Kalinichenko
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Steffen Sinning
- Department
of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jana Haase
- School
of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Christian P. Müller
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
- Institute
of Psychopharmacology, Central Institute of Mental Health, Medical
Faculty Mannheim, Heidelberg University, 69047, Mannheim, Germany
| |
Collapse
|
2
|
Sarkar P, Chattopadhyay A. Membrane Dipole Potential: An Emerging Approach to Explore Membrane Organization and Function. J Phys Chem B 2022; 126:4415-4430. [PMID: 35696090 DOI: 10.1021/acs.jpcb.2c02476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological membranes are complex organized molecular assemblies of lipids and proteins that provide cells and membrane-bound intracellular organelles their individual identities by morphological compartmentalization. Membrane dipole potential originates from the electrostatic potential difference within the membrane due to the nonrandom arrangement (orientation) of amphiphile and solvent (water) dipoles at the membrane interface. In this Feature Article, we will focus on the measurement of dipole potential using electrochromic fluorescent probes and highlight interesting applications. In addition, we will focus on ratiometric fluorescence microscopic imaging technique to measure dipole potential in cellular membranes, a technique that can be used to address novel problems in cell biology which are otherwise difficult to address using available approaches. We envision that membrane dipole potential could turn out to be a convenient tool in exploring the complex interplay between membrane lipids and proteins and could provide novel insights in membrane organization and function.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
3
|
Sarkar P, Chattopadhyay A. Insights into cellular signaling from membrane dynamics. Arch Biochem Biophys 2021; 701:108794. [PMID: 33571482 DOI: 10.1016/j.abb.2021.108794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
Biological membranes allow morphological compartmentalization of cells and represent complex micro-heterogeneous fluids exhibiting a range of dynamics. The plasma membrane occupies a central place in cellular signaling which allows the cell to perform a variety of functions. In this review, we analyze cellular signaling in a dynamic biophysical framework guided by the "mobile receptor hypothesis". We describe a variety of examples from literature in which lateral diffusion of signaling membrane proteins acts as an important determinant in the efficiency of signaling. A major focus in our review is on membrane-embedded G protein-coupled receptors (GPCRs) which act as cellular signaling hubs for diverse cellular functions. Taken together, we describe a dynamics-based signaling paradigm with chosen examples from literature to elucidate how such a paradigm helps us understand signaling by GPCRs, maintenance of cellular polarity in yeast and infection by pathogens. We envision that with further technological advancement, it would be possible to explore cellular signaling more holistically as cells undergo development, differentiation and aging, thereby providing us a robust window into the dynamics of the cellular interior and its functional correlates.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
4
|
Sarkar P, Mozumder S, Bej A, Mukherjee S, Sengupta J, Chattopadhyay A. Structure, dynamics and lipid interactions of serotonin receptors: excitements and challenges. Biophys Rev 2020; 13:10.1007/s12551-020-00772-8. [PMID: 33188638 PMCID: PMC7930197 DOI: 10.1007/s12551-020-00772-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an intrinsically fluorescent neurotransmitter found in organisms spanning a wide evolutionary range. Serotonin exerts its diverse actions by binding to distinct cell membrane receptors which are classified into many groups. Serotonin receptors are involved in regulating a diverse array of physiological signaling pathways and belong to the family of either G protein-coupled receptors (GPCRs) or ligand-gated ion channels. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions such as sleep, mood, pain, anxiety, depression, aggression, and learning. Serotonin receptors act as drug targets for a number of diseases, particularly neuropsychiatric disorders. The signaling mechanism and efficiency of serotonin receptors depend on their amazing ability to rapidly access multiple conformational states. This conformational plasticity, necessary for the wide variety of functions displayed by serotonin receptors, is regulated by binding to various ligands. In this review, we provide a succinct overview of recent developments in generating and analyzing high-resolution structures of serotonin receptors obtained using crystallography and cryo-electron microscopy. Capturing structures of distinct conformational states is crucial for understanding the mechanism of action of these receptors, which could provide important insight for rational drug design targeting serotonin receptors. We further provide emerging information and insight from studies on interactions of membrane lipids (such as cholesterol) with serotonin receptors. We envision that a judicious combination of analysis of high-resolution structures and receptor-lipid interaction would allow a comprehensive understanding of GPCR structure, function and dynamics, thereby leading to efficient drug discovery.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Aritra Bej
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Sujoy Mukherjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | | |
Collapse
|
5
|
Pal S, Chattopadhyay A. Extramembranous Regions in G Protein-Coupled Receptors: Cinderella in Receptor Biology? J Membr Biol 2019; 252:483-497. [DOI: 10.1007/s00232-019-00092-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
|
6
|
Kalinichenko LS, Hammad L, Reichel M, Kohl Z, Gulbins E, Kornhuber J, Müller CP. Acid sphingomyelinase controls dopamine activity and responses to appetitive stimuli in mice. Brain Res Bull 2019; 146:310-319. [DOI: 10.1016/j.brainresbull.2019.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
|
7
|
A Critical Analysis of Molecular Mechanisms Underlying Membrane Cholesterol Sensitivity of GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:21-52. [PMID: 30649754 DOI: 10.1007/978-3-030-04278-3_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and a diverse family of proteins involved in signal transduction across biological membranes. GPCRs mediate a wide range of physiological processes and have emerged as major targets for the development of novel drug candidates in all clinical areas. Since GPCRs are integral membrane proteins, regulation of their organization, dynamics, and function by membrane lipids, in particular membrane cholesterol, has emerged as an exciting area of research. Cholesterol sensitivity of GPCRs could be due to direct interaction of cholesterol with the receptor (specific effect). Alternately, GPCR function could be influenced by the effect of cholesterol on membrane physical properties (general effect). In this review, we critically analyze the specific and general mechanisms of the modulation of GPCR function by membrane cholesterol, taking examples from representative GPCRs. While evidence for both the proposed mechanisms exists, there appears to be no clear-cut distinction between these two mechanisms, and a combination of these mechanisms cannot be ruled out in many cases. We conclude that classifying the mechanism underlying cholesterol sensitivity of GPCR function merely into these two mutually exclusive classes could be somewhat arbitrary. A more holistic approach could be suitable for analyzing GPCR-cholesterol interaction.
Collapse
|
8
|
Surveying GPCR solubilisation conditions using surface plasmon resonance. Anal Biochem 2018; 556:23-34. [PMID: 29908863 DOI: 10.1016/j.ab.2018.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/08/2018] [Accepted: 06/13/2018] [Indexed: 11/22/2022]
Abstract
Biophysical screening techniques, such as surface plasmon resonance, enable detailed kinetic analysis of ligands binding to solubilised G-protein coupled receptors. The activity of a receptor solubilised out of the membrane is crucially dependent on the environment in which it is suspended. Finding the right conditions is challenging due to the number of variables to investigate in order to determine the optimum solubilisation buffer for any given receptor. In this study we used surface plasmon resonance technology to screen a variety of solubilisation conditions including buffers and detergents for two model receptors: CXCR4 and CCR5. We tested 950 different combinations of solubilisation conditions for both receptors. The activity of both receptors was monitored by using conformation dependent monoclonal antibodies and the binding of small molecule ligands. Despite both receptors belonging to the chemokine receptor family they show some differences in their preference for solubilisation conditions that provide the highest level of binding for both the conformation dependent antibodies and small molecules. The study described here is focused not only on finding the best solubilisation conditions for each receptor, but also on factors that determine the sensitivity of the assay for each receptor. We also suggest how these data about different buffers and detergents can be used as a guide for selecting solubilisation conditions for other membrane proteins.
Collapse
|
9
|
Solubilization of the serotonin 1A receptor monitored utilizing membrane dipole potential. Chem Phys Lipids 2017; 209:54-60. [DOI: 10.1016/j.chemphyslip.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
|
10
|
Membrane cholesterol oxidation in live cells enhances the function of serotonin 1A receptors. Chem Phys Lipids 2017; 203:71-77. [DOI: 10.1016/j.chemphyslip.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/15/2017] [Accepted: 01/15/2017] [Indexed: 12/14/2022]
|
11
|
Jafurulla M, Chattopadhyay A. Structural Stringency of Cholesterol for Membrane Protein Function Utilizing Stereoisomers as Novel Tools: A Review. Methods Mol Biol 2017; 1583:21-39. [PMID: 28205164 DOI: 10.1007/978-1-4939-6875-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cholesterol is an important lipid in the context of membrane protein function. The function of a number of membrane proteins, including G protein-coupled receptors (GPCRs) and ion channels, has been shown to be dependent on membrane cholesterol. However, the molecular mechanism underlying such regulation is still being explored. In some cases, specific interaction between cholesterol and the protein has been implicated. In other cases, the effect of cholesterol on the membrane properties has been attributed for the regulation of protein function. In this article, we have provided an overview of experimental approaches that are useful for determining the degree of structural stringency of cholesterol for membrane protein function. In the process, we have highlighted the role of immediate precursors in cholesterol biosynthetic pathway in the function of membrane proteins. Special emphasis has been given to the application of stereoisomers of cholesterol in deciphering the structural stringency required for regulation of membrane protein function. A comprehensive examination of these processes would help in understanding the molecular basis of cholesterol regulation of membrane proteins in subtle details.
Collapse
Affiliation(s)
- Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
12
|
Sarkar P, Chattopadhyay A. Micellar dipole potential is sensitive to sphere-to-rod transition. Chem Phys Lipids 2015; 195:34-8. [PMID: 26616562 DOI: 10.1016/j.chemphyslip.2015.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/31/2022]
Abstract
Structural transitions involving shape changes play an important role in cellular physiology. Charged micelles offer a convenient model system in which structural transitions can be suitably induced by increasing the ionic strength of the medium. In this paper, we have explored sphere-to-rod transition in charged micelles of SDS and CTAB by monitoring micellar dipole potential using the dual wavelength ratiometric approach utilizing the potential-sensitive membrane probe di-8-ANEPPS. Our results show that micellar dipole potential is sensitive to sphere-to-rod transition in charged micelles. Micellar dipole potential exhibited increase with increasing ionic strength (salt), irrespective of the nature of micellar charge, implying considerable dipolar reorganization underlying structural transitions. We interpret the increase in dipole potential due to sphere-to-rod transition because of an increase in the population of confined (nonrandom) dipoles induced by micellar organizational change. This is due to the fact that dipole potential arises due to the nonrandom arrangement of micellar dipoles and water molecules at the micelle interface. Our results constitute one of the first reports describing drastic dipolar reorganization due to micellar shape (and size) change. We envision that dipole potential measurements could provide novel insights into micellar processes that are associated with dipolar reorganization.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
13
|
Dipolar rearrangement during micellization explored using a potential-sensitive fluorescent probe. Chem Phys Lipids 2015; 191:91-5. [PMID: 26327331 DOI: 10.1016/j.chemphyslip.2015.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023]
Abstract
Dipole potential is the potential difference within the membrane bilayer, which originates due to the nonrandom arrangement of lipid dipoles and water molecules at the membrane interface. Although dipole potential is generally used in the context of bilayer membranes, the nonrandom arrangement of amphiphiles and water dipoles would also contribute to dipole potential in organized molecular assemblies such as micelles. In this work, we show that the process of micelle formation from monomers for a representative variety of detergents is associated with dipolar rearrangement. We monitor the dipolar reorganization upon micellization as a change in dipole potential, measured by the dual wavelength ratiometric approach utilizing the potential-sensitive membrane probe di-8-ANEPPS. We further utilized this phenomenon to estimate the critical micelle concentration (CMC) of a variety of detergents. CMC determined by this method are in overall agreement with the literature values of CMC for these detergents. To the best of our knowledge, these results constitute the first report showing dipolar reorientation during micellization. We conclude that dipole potential measurements could provide a novel approach to explore micellar organization.
Collapse
|