1
|
Huang T, Chamberlain A, Zhu J, Harris ME. A minimal RNA substrate with dual fluorescent probes enables rapid kinetics and provides insight into bacterial RNase P active site interactions. RSC Chem Biol 2024; 5:652-668. [PMID: 38966670 PMCID: PMC11221534 DOI: 10.1039/d4cb00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Bacterial ribonuclease P (RNase P) is a tRNA processing endonuclease that occurs primarily as a ribonucleoprotein with a catalytic RNA subunit (P RNA). As one of the first ribozymes discovered, P RNA is a well-studied model system for understanding RNA catalysis and substrate recognition. Extensive structural and biochemical studies have revealed the structure of RNase P bound to precursor tRNA (ptRNA) and product tRNA. These studies also helped to define active site residues and propose the molecular interactions that are involved in substrate binding and catalysis. However, a detailed quantitative model of the reaction cycle that includes the structures of intermediates and the process of positioning active site metal ions for catalysis is lacking. To further this goal, we used a chemically modified minimal RNA duplex substrate (MD1) to establish a kinetic framework for measuring the functional effects of P RNA active site mutations. Substitution of U69, a critical nucleotide involved in active site Mg2+ binding, was found to reduce catalysis >500-fold as expected, but had no measurable effect on ptRNA binding kinetics. In contrast, the same U69 mutations had little effect on catalysis in Ca2+ compared to reactions containing native Mg2+ ions. CryoEM structures and SHAPE mapping suggested increased flexibility of U69 and adjacent nucleotides in Ca2+ compared to Mg2+. These results support a model in which slow catalysis in Ca2+ is due to inability to engage U69. These studies establish a set of experimental tools to analyze RNase P kinetics and mechanism and can be expanded to gain new insights into the assembly of the active RNase P-ptRNA complex.
Collapse
Affiliation(s)
- Tong Huang
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| | | | - Jiaqiang Zhu
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| | - Michael E Harris
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| |
Collapse
|
2
|
Lee S, Jo K, Jeong SKC, Jeon H, Kim YJ, Choi YS, Jung S. Heat-induced gelation of egg white proteins depending on heating temperature: Insights into protein structure and digestive behaviors in the elderly in vitro digestion model. Int J Biol Macromol 2024; 262:130053. [PMID: 38360234 DOI: 10.1016/j.ijbiomac.2024.130053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
This study investigated the effects of heating temperature of egg white gels (EWGs) on the digestive characteristics by heating egg white (EW) to reach 75 °C (EWG-75) and 95 °C (EWG-95). The gel protein structure showed a decrease in the maximum tryptophan fluorescence intensity and a significant increase in the surface hydrophobicity of EWGs compared to EW (P < 0.05). The total and reactive free sulfhydryl groups were higher in the EWGs than in the EW (P < 0.05). While the proportions of α-helical and β-sheet structures remained similar in EW and EWG-75 (P > 0.05), EWG-95 exhibited a notable decrease in α-helix content (P < 0.05) and an increase in β-sheet content (P < 0.05). Furthermore, EWG-95 displayed higher hardness and cohesiveness than EWG-75 (P < 0.05). In the adult and elderly in vitro digestion models, EWG-95 exhibited the highest protein digestibility (50.44 % and 54.65 % in the models of elderly and adult subjects, respectively) after GI digestion (P < 0.05), followed by EWG-75 and EW. The electrophoretogram of the digesta revealed more intense protein bands in the elderly digestion model, particularly in the gastric digesta of EW, indicating slower digestion compared to the adult model. Therefore, EW should be appropriately heated before consumption, especially for elderly individuals, to facilitate efficient protein digestion and absorption.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hayeon Jeon
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yea-Ji Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
3
|
Suddala KC, Yoo J, Fan L, Zuo X, Wang YX, Chung HS, Zhang J. Direct observation of tRNA-chaperoned folding of a dynamic mRNA ensemble. Nat Commun 2023; 14:5438. [PMID: 37673863 PMCID: PMC10482949 DOI: 10.1038/s41467-023-41155-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
T-box riboswitches are multi-domain noncoding RNAs that surveil individual amino acid availabilities in most Gram-positive bacteria. T-boxes directly bind specific tRNAs, query their aminoacylation status to detect starvation, and feedback control the transcription or translation of downstream amino-acid metabolic genes. Most T-boxes rapidly recruit their cognate tRNA ligands through an intricate three-way stem I-stem II-tRNA interaction, whose establishment is not understood. Using single-molecule FRET, SAXS, and time-resolved fluorescence, we find that the free T-box RNA assumes a broad distribution of open, semi-open, and closed conformations that only slowly interconvert. tRNA directly binds all three conformers with distinct kinetics, triggers nearly instantaneous collapses of the open conformations, and returns the T-box RNA to their pre-binding conformations upon dissociation. This scissors-like dynamic behavior is enabled by a hinge-like pseudoknot domain which poises the T-box for rapid tRNA-induced domain closure. This study reveals tRNA-chaperoned folding of flexible, multi-domain mRNAs through a Venus flytrap-like mechanism.
Collapse
Affiliation(s)
- Krishna C Suddala
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Janghyun Yoo
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD, 21702, USA
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yun-Xing Wang
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD, 21702, USA
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Eladl O, Yamaoki Y, Kondo K, Nagata T, Katahira M. Complex Formation of an RNA Aptamer with a Part of HIV-1 Tat through Induction of Base Triples in Living Human Cells Proven by In-Cell NMR. Int J Mol Sci 2023; 24:ijms24109069. [PMID: 37240414 DOI: 10.3390/ijms24109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
An RNA aptamer that strongly binds to a target molecule has the potential to be a nucleic acid drug inside living human cells. To investigate and improve this potential, it is critical to elucidate the structure and interaction of RNA aptamers inside living cells. We examined an RNA aptamer for HIV-1 Tat (TA), which had been found to trap Tat and repress its function in living human cells. We first used in vitro NMR to examine the interaction between TA and a part of Tat containing the binding site for trans-activation response element (TAR). It was revealed that two U-A∗U base triples are formed in TA upon binding of Tat. This was assumed to be critical for strong binding. Then, TA in complex with a part of Tat was incorporated into living human cells. The presence of two U-A∗U base triples was also revealed for the complex in living human cells by in-cell NMR. Thus, the activity of TA in living human cells was rationally elucidated by in-cell NMR.
Collapse
Grants
- 20H03192, 20K21477, 21H05519, and 22H05596 to M. K., 17H05878 and 20K06524 to T. N., and 19K16054 and 22K05314 to Y. Y.) Japan Society for the Promotion of Science
- (20fk0410027 and 23fk0410048 to M. K., and 22ak0101097 to T. N.) Japan Agency for Medical Research and Development
- NMRCR-22-05 to T. N. The Collaborative Research Program of the Institute for Protein Research, Osaka University
- to Y.Y The Collaboration Program of the Laboratory for Complex Energy Processes, Institute of Ad-vanced Energy, Kyoto University
- 235181 to O.E Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Omar Eladl
- Structural Energy Bioscience Research Section, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Yudai Yamaoki
- Structural Energy Bioscience Research Section, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
| | - Keiko Kondo
- Structural Energy Bioscience Research Section, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
- Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Kyoto 611-0011, Japan
| | - Takashi Nagata
- Structural Energy Bioscience Research Section, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
| | - Masato Katahira
- Structural Energy Bioscience Research Section, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
- Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Kyoto 611-0011, Japan
| |
Collapse
|
5
|
Li XD, Liu L, Cheng L. Identification of thienopyridine carboxamides as selective binders of HIV-1 trans Activation Response (TAR) and Rev Response Element (RRE) RNAs. Org Biomol Chem 2019; 16:9191-9196. [PMID: 30465585 DOI: 10.1039/c8ob02753f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Small organic molecules that can selectively bind to RNA with specificity are relatively rare. Here we report the synthesis, biochemical and structural studies of thienopyridine carboxamide derivatives with the capacity of selectively recognizing and binding with HIV-1 TAR and RRE RNAs that are essential elements for viral replication.
Collapse
Affiliation(s)
- Xue-Dong Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | |
Collapse
|
6
|
Apurinic/apyrimidinic endonuclease Apn1 from Saccharomyces cerevisiae is recruited to the nucleotide incision repair pathway: Kinetic and structural features. Biochimie 2018; 152:53-62. [PMID: 29959063 DOI: 10.1016/j.biochi.2018.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022]
Abstract
Apurinic/apyrimidinic endonuclease Apn1 of Saccharomyces cerevisiae is known as a key player of the base excision DNA repair (BER) pathway in yeast. BER is initiated by DNA glycosylases, whereas Apn1 can start DNA repair individually in the nucleotide incision repair (NIR) pathway. The aim of this research was to elucidate kinetic and structural dynamic aspects of Apn1 involvement in the NIR process. One of the key characteristics of AP endonuclease's interactions is known to be divalent metal ions playing a part of a cofactor. Well-studied human APE1 employs Mg2+ ions, with metal ion concentration's affecting enzymatic activity exerted by APE1. In our study, we aimed to test the effect of the Mg2+ ion on Apn1's NIR catalysis by examining structural dynamics of DNA during the interaction in real time using the stopped-flow technique. To test NIR activity of Apn1, deoxyribooligonucleotide duplexes containing a 5,6-dihydro-2'-deoxyuridine (DHU) residue were employed as substrates. A 2-aminopurine (2-aPu) residue was a reporter group fluorescence intensity of which was detected during Apn1-DNA interactions. NIR activity of both WT and H83A Apn1 was found to be arrested during the interaction with a DNA duplex containing the 2-aPu residue upstream of DHU. We conducted molecular dynamics simulations to elucidate the structural features of complexes of the enzyme with DHU-containing DNAs. The NIR recruiting S. cerevisiae Apn1 proceeds via multistep rearrangements of the complex of Apn1 with a DHU-containing DNA substrate and results in the incised product of the reaction. For wild-type Apn1, the catalytic rate constants do not depend on the Mg2+ concentration, i.e., they are equal in NIR and BER buffers, with equilibrium association constant Ka being 10-fold higher in NIR buffer. Our data reveal more delicate regulation of Apn1's NIR activity due to the more complicated kinetic mechanism, as compared to BER.
Collapse
|
7
|
Gu X, Park SY, Tonelli M, Cornilescu G, Xia T, Zhong D, Schroeder SJ. NMR Structures and Dynamics in a Prohead RNA Loop that Binds Metal Ions. J Phys Chem Lett 2016; 7:3841-3846. [PMID: 27631837 PMCID: PMC5762182 DOI: 10.1021/acs.jpclett.6b01465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Metal ions are critical for RNA structure and enzymatic activity. We present the structure of an asymmetric RNA loop that binds metal ions and has an essential function in a bacteriophage packaging motor. Prohead RNA is a noncoding RNA that is required for genome packaging activity in phi29-like bacteriophage. The loops in GA1 and phi29 bacteriophage share a conserved adenine that forms a base triple, although the structural context for the base triple differs. NMR relaxation studies and femtosecond time-resolved fluorescence spectroscopy reveal the dynamic behavior of the loop in the metal ion bound and unbound forms. The mechanism of metal ion binding appears to be an induced conformational change between two dynamic ensembles rather than a conformational capture mechanism. These results provide experimental benchmarks for computational models of RNA-metal ion interactions.
Collapse
Affiliation(s)
- Xiaobo Gu
- Department of Chemistry & Biochemistry and Department of Microbiology & Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Sun-Young Park
- Department of Physics, Ohio State University, Columbus, Ohio 43210, United States
| | - Marco Tonelli
- NMRFAM, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Gabriel Cornilescu
- NMRFAM, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Tianbing Xia
- Department of Molecular and Cell Biology, University of Texas, Dallas, Texas 75080, United States
| | - Dongping Zhong
- Department of Physics, Ohio State University, Columbus, Ohio 43210, United States
| | - Susan J. Schroeder
- Department of Chemistry & Biochemistry and Department of Microbiology & Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
- Corresponding Author.
| |
Collapse
|