1
|
Bertran A, Morbiato L, Aquilia S, Gabbatore L, De Zotti M, Timmel CR, Di Valentin M, Bowen AM. Erythrosin B as a New Photoswitchable Spin Label for Light-Induced Pulsed EPR Dipolar Spectroscopy. Molecules 2022; 27:molecules27217526. [PMID: 36364348 PMCID: PMC9657417 DOI: 10.3390/molecules27217526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
We present a new photoswitchable spin label for light-induced pulsed electron paramagnetic resonance dipolar spectroscopy (LiPDS), the photoexcited triplet state of erythrosin B (EB), which is ideal for biological applications. With this label, we perform an in-depth study of the orientational effects in dipolar traces acquired using the refocused laser-induced magnetic dipole technique to obtain information on the distance and relative orientation between the EB and nitroxide labels in a rigid model peptide, in good agreement with density functional theory predictions. Additionally, we show that these orientational effects can be averaged to enable an orientation-independent analysis to determine the distance distribution. Furthermore, we demonstrate the feasibility of these experiments above liquid nitrogen temperatures, removing the need for expensive liquid helium or cryogen-free cryostats. The variety of choices in photoswitchable spin labels and the affordability of the experiments are critical for LiPDS to become a widespread methodology in structural biology.
Collapse
Affiliation(s)
- Arnau Bertran
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK
| | - Laura Morbiato
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Sara Aquilia
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Laura Gabbatore
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Centro Interdipartimentale di Ricerca “Centro Studi di Economia e Tecnica dell’Energia Giorgio Levi Cases”, University of Padova, 35131 Padova, Italy
| | - Christiane R. Timmel
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Centro Interdipartimentale di Ricerca “Centro Studi di Economia e Tecnica dell’Energia Giorgio Levi Cases”, University of Padova, 35131 Padova, Italy
- Correspondence: (M.D.V.); (A.M.B.)
| | - Alice M. Bowen
- The National Research Facility for Electron Paramagnetic Resonance, Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester M13 9PL, UK
- Correspondence: (M.D.V.); (A.M.B.)
| |
Collapse
|
2
|
Abstract
Different types of spin labels are currently available for structural studies of biomolecules both in vitro and in cells using Electron Paramagnetic Resonance (EPR) and pulse dipolar spectroscopy (PDS). Each type of label has its own advantages and disadvantages, that will be addressed in this chapter. The spectroscopically distinct properties of the labels have fostered new applications of PDS aimed to simultaneously extract multiple inter-label distances on the same sample. In fact, combining different labels and choosing the optimal strategy to address their inter-label distances can increase the information content per sample, and this is pivotal to better characterize complex multi-component biomolecular systems. In this review, we provide a brief background of the spectroscopic properties of the four most common orthogonal spin labels for PDS measurements and focus on the various methods at disposal to extract homo- and hetero-label distances in proteins. We also devote a section to possible artifacts arising from channel crosstalk and provide few examples of applications in structural biology.
Collapse
|
3
|
Bowen AM, Bertran A, Henbest KB, Gobbo M, Timmel CR, Di Valentin M. Orientation-Selective and Frequency-Correlated Light-Induced Pulsed Dipolar Spectroscopy. J Phys Chem Lett 2021; 12:3819-3826. [PMID: 33856805 PMCID: PMC8154851 DOI: 10.1021/acs.jpclett.1c00595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
We explore the potential of orientation-resolved pulsed dipolar spectroscopy (PDS) in light-induced versions of the experiment. The use of triplets as spin-active moieties for PDS offers an attractive tool for studying biochemical systems containing optically active cofactors. Cofactors are often rigidly bound within the protein structure, providing an accurate positional marker. The rigidity leads to orientation selection effects in PDS, which can be analyzed to give both distance and mutual orientation information. Herein we present a comprehensive analysis of the orientation selection of a full set of light-induced PDS experiments. We exploit the complementary information provided by the different light-induced techniques to yield atomic-level structural information. For the first time, we measure a 2D frequency-correlated laser-induced magnetic dipolar spectrum, and we are able to monitor the complete orientation dependence of the system in a single experiment. Alternatively, the summed spectrum enables an orientation-independent analysis to determine the distance distribution.
Collapse
Affiliation(s)
- Alice M. Bowen
- Department
of Chemistry, Photon Science Institute and The National EPR Research
Facility, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Arnau Bertran
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Kevin B. Henbest
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Marina Gobbo
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Christiane R. Timmel
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Marilena Di Valentin
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Probing Structural Dynamics of Membrane Proteins Using Electron Paramagnetic Resonance Spectroscopic Techniques. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane proteins are essential for the survival of living organisms. They are involved in important biological functions including transportation of ions and molecules across the cell membrane and triggering the signaling pathways. They are targets of more than half of the modern medical drugs. Despite their biological significance, information about the structural dynamics of membrane proteins is lagging when compared to that of globular proteins. The major challenges with these systems are low expression yields and lack of appropriate solubilizing medium required for biophysical techniques. Electron paramagnetic resonance (EPR) spectroscopy coupled with site directed spin labeling (SDSL) is a rapidly growing powerful biophysical technique that can be used to obtain pertinent structural and dynamic information on membrane proteins. In this brief review, we will focus on the overview of the widely used EPR approaches and their emerging applications to answer structural and conformational dynamics related questions on important membrane protein systems.
Collapse
|
5
|
Sahu ID, Lorigan GA. Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins. Biomolecules 2020; 10:E763. [PMID: 32414134 PMCID: PMC7278021 DOI: 10.3390/biom10050763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins possess a variety of functions essential to the survival of organisms. However, due to their inherent hydrophobic nature, it is extremely difficult to probe the structure and dynamic properties of membrane proteins using traditional biophysical techniques, particularly in their native environments. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a very powerful and rapidly growing biophysical technique to study pertinent structural and dynamic properties of membrane proteins with no size restrictions. In this review, we will briefly discuss the most commonly used EPR techniques and their recent applications for answering structure and conformational dynamics related questions of important membrane protein systems.
Collapse
Affiliation(s)
- Indra D. Sahu
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
6
|
Ding Y, Kathiresan V, Zhang X, Haworth IS, Qin PZ. Experimental Validation of the ALLNOX Program for Studying Protein-Nucleic Acid Complexes. J Phys Chem A 2019; 123:3592-3598. [PMID: 30978022 DOI: 10.1021/acs.jpca.9b01027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Measurement of distances between spectroscopic labels (e.g., spin labels, fluorophores) attached to specific sites of biomolecules is an important method for studying biomolecular complexes. ALLNOX (Addition of Labels and Linkers) has been developed as a program to model interlabel distances based on an input macromolecule structure. Here, we report validation of ALLNOX using measured distances between nitroxide spin labels attached to specific sites of a protein-DNA complex. The results demonstrate that ALLNOX predicts average interspin distances that matched with values measured with pairs of labels attached at the protein and/or DNA. This establishes a solid foundation for using spin labeling in conjunction with ALLNOX to investigate complexes without high-resolution structures. With its high degree of flexibility for the label or the target biomolecule, ALLNOX provides a useful tool for investigating the structure-function relationship in a large variety of biological molecules.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Venkatesan Kathiresan
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Xiaojun Zhang
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Ian S Haworth
- Department of Pharmacology and Pharmaceutical Sciences , University of Southern California , Los Angeles , California 90089 , United States
| | - Peter Z Qin
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States.,Department of Biological Sciences , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
7
|
Dal Farra MG, Richert S, Martin C, Larminie C, Gobbo M, Bergantino E, Timmel CR, Bowen AM, Di Valentin M. Light-Induced Pulsed EPR Dipolar Spectroscopy on a Paradigmatic Hemeprotein. Chemphyschem 2019; 20:931-935. [PMID: 30817078 PMCID: PMC6618045 DOI: 10.1002/cphc.201900139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/27/2019] [Indexed: 01/12/2023]
Abstract
Light-induced pulsed EPR dipolar spectroscopic methods allow the determination of nanometer distances between paramagnetic sites. Here we employ orthogonal spin labels, a chromophore triplet state and a stable radical, to carry out distance measurements in singly nitroxide-labeled human neuroglobin. We demonstrate that Zn-substitution of neuroglobin, to populate the Zn(II) protoporphyrin IX triplet state, makes it possible to perform light-induced pulsed dipolar experiments on hemeproteins, extending the use of light-induced dipolar spectroscopy to this large class of metalloproteins. The versatility of the method is ensured by the employment of different techniques: relaxation-induced dipolar modulation enhancement (RIDME) is applied for the first time to the photoexcited triplet state. In addition, an alternative pulse scheme for laser-induced magnetic dipole (LaserIMD) spectroscopy, based on the refocused-echo detection sequence, is proposed for accurate zero-time determination and reliable distance analysis.
Collapse
Affiliation(s)
| | - Sabine Richert
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
- current affiliation: Institute of Physical ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
| | - Caterina Martin
- Department of BiologyUniversity of Padovaviale G. Colombo 335121PadovaItaly
- current affiliation: Groningen Biomolecular Science and Biotechnology InstituteUniversity of Groningen9700 ABGroningenThe Netherlands
| | - Charles Larminie
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Marina Gobbo
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131PadovaItaly
| | | | - Christiane R. Timmel
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Alice M. Bowen
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Marilena Di Valentin
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131PadovaItaly
| |
Collapse
|
8
|
Lawless MJ, Pettersson JR, Rule GS, Lanni F, Saxena S. ESR Resolves the C Terminus Structure of the Ligand-free Human Glutathione S-Transferase A1-1. Biophys J 2019; 114:592-601. [PMID: 29414705 DOI: 10.1016/j.bpj.2017.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2023] Open
Abstract
Nitroxide- and Cu2+-based electron spin resonance (ESR) are combined to provide insight into the conformational states of the functionally important α-helix of the human glutathione S-transferase A1. Distance measurements on various spin-labeled dimeric human glutathione S-transferase A1-1 all result in bimodal distance distributions, indicating that the C-terminus exists in two distinct conformations in solution, one of which closely matches that found in the crystal structure of the ligand-bound enzyme. These measurements permit the generation of a model of the unliganded conformation. Room temperature ESR indicates that the second conformation has high mobility, potentially enabling the enzyme's high degree of substrate promiscuity. This model is then validated using computational modeling and further Cu2+-based ESR distance measurements. Cu2+-based ESR also provides evidence that the secondary structure of the second conformation is of helical nature. Addition of S-hexyl glutathione results in a shift in relative populations, favoring the state that is similar to the previously known structure of the ligand-bound enzyme.
Collapse
Affiliation(s)
- Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John R Pettersson
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
9
|
Gamble Jarvi A, Ranguelova K, Ghosh S, Weber RT, Saxena S. On the Use of Q-Band Double Electron–Electron Resonance To Resolve the Relative Orientations of Two Double Histidine-Bound Cu2+ Ions in a Protein. J Phys Chem B 2018; 122:10669-10677. [DOI: 10.1021/acs.jpcb.8b07727] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Austin Gamble Jarvi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kalina Ranguelova
- Bruker BioSpin, Inc., EPR Division, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ralph T. Weber
- Bruker BioSpin, Inc., EPR Division, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
10
|
New limits of sensitivity of site-directed spin labeling electron paramagnetic resonance for membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:841-853. [DOI: 10.1016/j.bbamem.2017.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/27/2017] [Accepted: 12/09/2017] [Indexed: 01/27/2023]
|
11
|
Donohue MP, Szalai VA. Distance measurements between paramagnetic ligands bound to parallel stranded guanine quadruplexes. Phys Chem Chem Phys 2018; 18:15447-55. [PMID: 27218217 DOI: 10.1039/c6cp01121g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aside from a double helix, deoxyribonucleic acid (DNA) folds into non-canonical structures, one of which is the guanine quadruplex. Cationic porphyrins bind guanine quadruplexes, but the effects of ligand binding on the structure of guanine quadruplexes with more than four contiguous guanine quartets remains to be fully elucidated. Double electron-electron resonance (DEER) spectroscopy conducted at 9.5 GHz (X-band) using broadband, shaped inversion pulses was used to measure the distances between cationic copper porphyrins bound to model parallel-stranded guanine quadruplexes with increasing numbers of guanine quartets. A single Gaussian component was found to best model the time domain datasets, characteristic of a 2 : 1 binding stoichiometry between the porphyrins and each quadruplex. The measured Cu(2+)-Cu(2+) distances were found to be linearly proportional with the number of guanines. Rather unexpectedly, the ligand end-stacking distance was found to monotonically decreases the overall quadruplex length was extended, suggesting a conformational change in the quadruplex secondary structure dependent upon the number of successive guanine quartets.
Collapse
Affiliation(s)
- M P Donohue
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. and Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
| | - V A Szalai
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
12
|
Ghosh S, Lawless MJ, Rule GS, Saxena S. The Cu 2+-nitrilotriacetic acid complex improves loading of α-helical double histidine site for precise distance measurements by pulsed ESR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 286:163-171. [PMID: 29272745 DOI: 10.1016/j.jmr.2017.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 05/09/2023]
Abstract
Site-directed spin labeling using two strategically placed natural histidine residues allows for the rigid attachment of paramagnetic Cu2+. This double histidine (dHis) motif enables extremely precise, narrow distance distributions resolved by Cu2+-based pulsed ESR. Furthermore, the distance measurements are easily relatable to the protein backbone-structure. The Cu2+ ion has, till now, been introduced as a complex with the chelating agent iminodiacetic acid (IDA) to prevent unspecific binding. Recently, this method was found to have two limiting concerns that include poor selectivity towards α-helices and incomplete Cu2+-IDA complexation. Herein, we introduce an alternative method of dHis-Cu2+ loading using the nitrilotriacetic acid (NTA)-Cu2+ complex. We find that the Cu2+-NTA complex shows a four-fold increase in selectivity toward α-helical dHis sites. Furthermore, we show that 100% Cu2+-NTA complexation is achievable, enabling precise dHis loading and resulting in no free Cu2+ in solution. We analyze the optimum dHis loading conditions using both continuous wave and pulsed ESR. We implement these findings to show increased sensitivity of the Double Electron-Electron Resonance (DEER) experiment in two different protein systems. The DEER signal is increased within the immunoglobulin binding domain of protein G (called GB1). We measure distances between a dHis site on an α-helix and dHis site either on a mid-strand or a non-hydrogen bonded edge-strand β-sheet. Finally, the DEER signal is increased twofold within two α-helix dHis sites in the enzymatic dimer glutathione S-transferase exemplifying the enhanced α-helical selectivity of Cu2+-NTA.
Collapse
Affiliation(s)
- Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
13
|
Bahrenberg T, Rosenski Y, Carmieli R, Zibzener K, Qi M, Frydman V, Godt A, Goldfarb D, Feintuch A. Improved sensitivity for W-band Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements with shaped pulses. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 283:1-13. [PMID: 28834777 DOI: 10.1016/j.jmr.2017.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Chirp and shaped pulses have been recently shown to be highly advantageous for improving sensitivity in DEER (double electron-electron resonance, also called PELDOR) measurements due to their large excitation bandwidth. The implementation of such pulses for pulse EPR has become feasible due to the availability of arbitrary waveform generators (AWG) with high sampling rates to support pulse shaping for pulses with tens of nanoseconds duration. Here we present a setup for obtaining chirp pulses on our home-built W-band (95GHz) spectrometer and demonstrate its performance on Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements. We carried out an extensive optimization procedure on two model systems, Gd(III)-PyMTA-spacer-Gd(III)-PyMTA (Gd-PyMTA ruler; zero-field splitting parameter (ZFS) D∼1150MHz) as well as nitroxide-spacer-nitroxide (nitroxide ruler) to evaluate the applicability of shaped pulses to Gd(III) complexes and nitroxides, which are two important classes of spin labels used in modern DEER/EPR experiments. We applied our findings to ubiquitin, doubly labeled with Gd-DOTA-monoamide (D∼550MHz) asa model for a system with a small ZFS. Our experiments were focused on the questions (i) what are the best conditions for positioning of the detection frequency, (ii) which pump pulse parameters (bandwidth, positioning in the spectrum, length) yield the best signal-to-noise ratio (SNR) improvements when compared to classical DEER, and (iii) how do the sample's spectral parameters influence the experiment. For the nitroxide ruler, we report an improvement of up to 1.9 in total SNR, while for the Gd-PyMTA ruler the improvement was 3.1-3.4 and for Gd-DOTA-monoamide labeled ubiquitin it was a factor of 1.8. Whereas for the Gd-PyMTA ruler the two setups pump on maximum and observe on maximum gave about the same improvement, for Gd-DOTA-monoamide a significant difference was found. In general the choice of the best set of parameters depends on the D parameter of the Gd(III) complex.
Collapse
Affiliation(s)
- Thorsten Bahrenberg
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Yael Rosenski
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Koby Zibzener
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, 33615 Bielefeld, Germany
| | - Veronica Frydman
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, 33615 Bielefeld, Germany
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
14
|
Khan M, Hayat M, Khan SA, Iqbal N. Unb-DPC: Identify mycobacterial membrane protein types by incorporating un-biased dipeptide composition into Chou's general PseAAC. J Theor Biol 2017; 415:13-19. [DOI: 10.1016/j.jtbi.2016.12.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/24/2016] [Accepted: 12/07/2016] [Indexed: 01/22/2023]
|
15
|
Lawless MJ, Ghosh S, Cunningham TF, Shimshi A, Saxena S. On the use of the Cu2+–iminodiacetic acid complex for double histidine based distance measurements by pulsed ESR. Phys Chem Chem Phys 2017; 19:20959-20967. [DOI: 10.1039/c7cp02564e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Cu2+-based DEER signal of the double histidine motif was increased by a factor of two by understanding optimal loading conditions.
Collapse
Affiliation(s)
- M. J. Lawless
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - S. Ghosh
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - T. F. Cunningham
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - A. Shimshi
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| | - S. Saxena
- Department of Chemistry, University of Pittsburgh
- 219 Parkman Ave
- Pittsburgh
- USA
| |
Collapse
|
16
|
Jones CE, Berliner LJ. Nitroxide Spin-Labelling and Its Role in Elucidating Cuproprotein Structure and Function. Cell Biochem Biophys 2016; 75:195-202. [PMID: 27342129 DOI: 10.1007/s12013-016-0751-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
Abstract
Copper is one of the most abundant biological metals, and its chemical properties mean that organisms need sophisticated and multilayer mechanisms in place to maintain homoeostasis and avoid deleterious effects. Studying copper proteins requires multiple techniques, but electron paramagnetic resonance (EPR) plays a key role in understanding Cu(II) sites in proteins. When spin-labels such as aminoxyl radicals (commonly referred to as nitroxides) are introduced, then EPR becomes a powerful technique to monitor not only the coordination environment, but also to obtain structural information that is often not readily available from other techniques. This information can contribute to explaining how cuproproteins fold and misfold. The theory and practice of EPR can be daunting to the non-expert; therefore, in this mini review, we explore how nitroxide spin-labelling can be used to help the inorganic biochemist gain greater understanding of cuproprotein structure and function in vitro and how EPR imaging may help improve understanding of copper homoeostasis in vivo.
Collapse
Affiliation(s)
- Christopher E Jones
- The School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2759, Australia.
| | - Lawrence J Berliner
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208-0183, USA
| |
Collapse
|