1
|
Murayama MA, Shimizu J, Miyabe C, Yudo K, Miyabe Y. Chemokines and chemokine receptors as promising targets in rheumatoid arthritis. Front Immunol 2023; 14:1100869. [PMID: 36860872 PMCID: PMC9968812 DOI: 10.3389/fimmu.2023.1100869] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that commonly causes inflammation and bone destruction in multiple joints. Inflammatory cytokines, such as IL-6 and TNF-α, play important roles in RA development and pathogenesis. Biological therapies targeting these cytokines have revolutionized RA therapy. However, approximately 50% of the patients are non-responders to these therapies. Therefore, there is an ongoing need to identify new therapeutic targets and therapies for patients with RA. In this review, we focus on the pathogenic roles of chemokines and their G-protein-coupled receptors (GPCRs) in RA. Inflamed tissues in RA, such as the synovium, highly express various chemokines to promote leukocyte migration, tightly controlled by chemokine ligand-receptor interactions. Because the inhibition of these signaling pathways results in inflammatory response regulation, chemokines and their receptors could be promising targets for RA therapy. The blockade of various chemokines and/or their receptors has yielded prospective results in preclinical trials using animal models of inflammatory arthritis. However, some of these strategies have failed in clinical trials. Nonetheless, some blockades showed promising results in early-phase clinical trials, suggesting that chemokine ligand-receptor interactions remain a promising therapeutic target for RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Jun Shimizu
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Chie Miyabe
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazuo Yudo
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
2
|
Miyabe Y, Miyabe C, Mani V, Mempel TR, Luster AD. Atypical complement receptor C5aR2 transports C5a to initiate neutrophil adhesion and inflammation. Sci Immunol 2019; 4:eaav5951. [PMID: 31076525 DOI: 10.1126/sciimmunol.aav5951] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
Chemoattractant-induced arrest of circulating leukocytes and their subsequent diapedesis is a fundamental component of inflammation. However, how tissue-derived chemoattractants are transported into the blood vessel lumen to induce leukocyte entry into tissue is not well understood. Here, intravital microscopy in live mice has shown that the "atypical" complement C5a receptor 2 (C5aR2) and the atypical chemokine receptor 1 (ACKR1) expressed on endothelial cells were required for the transport of C5a and CXCR2 chemokine ligands, respectively, into the vessel lumen in a murine model of immune complex-induced arthritis. Transported C5a was required to initiate C5aR1-mediated neutrophil arrest, whereas transported chemokines were required to initiate CXCR2-dependent neutrophil transdendothelial migration. These findings provide new insights into how atypical chemoattractant receptors collaborate with "classical" signaling chemoattractant receptors to control distinct steps in the recruitment of neutrophils into tissue sites of inflammation.
Collapse
Affiliation(s)
- Yoshishige Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chie Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vinidhra Mani
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Angelini A, Miyabe Y, Newsted D, Kwan BH, Miyabe C, Kelly RL, Jamy MN, Luster AD, Wittrup KD. Directed evolution of broadly crossreactive chemokine-blocking antibodies efficacious in arthritis. Nat Commun 2018; 9:1461. [PMID: 29654232 PMCID: PMC5899157 DOI: 10.1038/s41467-018-03687-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
Chemokine receptors typically have multiple ligands. Consequently, treatment with a blocking antibody against a single chemokine is expected to be insufficient for efficacy. Here we show single-chain antibodies can be engineered for broad crossreactivity toward multiple human and mouse proinflammatory ELR+ CXC chemokines. The engineered molecules recognize functional epitopes of ELR+ CXC chemokines and inhibit neutrophil activation ex vivo. Furthermore, an albumin fusion of the most crossreactive single-chain antibody prevents and reverses inflammation in the K/BxN mouse model of arthritis. Thus, we report an approach for the molecular evolution and selection of broadly crossreactive antibodies towards a family of structurally related, yet sequence-diverse protein targets, with general implications for the development of novel therapeutics. CXCR2 antagonism has been shown to be anti-arthritic, but anti-chemokine therapies usually fail in the clinic owing to redundancy in chemokine-receptor interactions. Here the authors develop single-chain antibodies with multiple chemokine specificities to achieve high affinity and broad specificity to mouse and human CXC chemokines with efficacy in a K/BxN serum transfer model of arthritis.
Collapse
Affiliation(s)
- Alessandro Angelini
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA. .,Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA. .,Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Italy.
| | - Yoshishige Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Daniel Newsted
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Byron H Kwan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Chie Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Ryan L Kelly
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Misha N Jamy
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA. .,Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
4
|
Sadik CD, Miyabe Y, Sezin T, Luster AD. The critical role of C5a as an initiator of neutrophil-mediated autoimmune inflammation of the joint and skin. Semin Immunol 2018; 37:21-29. [PMID: 29602515 DOI: 10.1016/j.smim.2018.03.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/15/2023]
Abstract
The deposition of IgG autoantibodies in peripheral tissues and the subsequent activation of the complement system, which leads to the accumulation of the anaphylatoxin C5a in these tissues, is a common hallmark of diverse autoimmune diseases, including rheumatoid arthritis (RA) and pemphigoid diseases (PDs). C5a is a potent chemoattractant for granulocytes and mice deficient in its precursor C5 or its receptor C5aR1 are resistant to granulocyte recruitment and, consequently, to tissue inflammation in several models of autoimmune diseases. However, the mechanism whereby C5a/C5aR regulates granulocyte recruitment in these diseases has remained elusive. Mechanistic studies over the past five years into the role of C5a/C5aR1 in the K/BxN serum arthritis mouse model have provided novel insights into the mechanisms C5a/C5aR1 engages to initiate granulocyte recruitment into the joint. It is now established that the critical actions of C5a/C5aR1 do not proceed in the joint itself, but on the luminal endothelial surface of the joint vasculature, where C5a/C5aR1 mediate the arrest of neutrophils on the endothelium by activating β2 integrin. Then, C5a/C5aR1 induces the release of leukotriene B4 (LTB4) from the arrested neutrophils. The latter, subsequently, initiates by autocrine/paracrine actions via its receptor BLT1 the egress of neutrophils from the blood vessel lumen into the interstitial. Compelling evidence suggests that this C5a/C5aR1-LTB4/BLT1 axis driving granulocyte recruitment in arthritis may represent a more generalizable biological principle critically regulating effector cell recruitment in other IgG autoantibody-induced diseases, such as in pemphigoid diseases. Thus, dual inhibition of C5a and LTB4, as implemented in nature by the lipocalin coversin in the soft-tick Ornithodoros moubata, may constitute a most effective therapeutic principle for the treatment of IgG autoantibody-driven diseases.
Collapse
Affiliation(s)
- Christian D Sadik
- Department of Dermatology, Allergy, and Venereology University of Lübeck, 23538, Lübeck, Germany.
| | - Yoshishige Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanya Sezin
- Department of Dermatology, Allergy, and Venereology University of Lübeck, 23538, Lübeck, Germany
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Miyabe Y, Miyabe C, Murooka TT, Kim EY, Newton GA, Kim ND, Haribabu B, Luscinskas FW, Mempel TR, Luster AD. Complement C5a Receptor is the Key Initiator of Neutrophil Adhesion Igniting Immune Complex-induced Arthritis. Sci Immunol 2017; 2. [PMID: 28529998 DOI: 10.1126/sciimmunol.aaj2195] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The deposition of immune complexes (IC) in tissues induces a "type III hypersensitivity" that results in tissue damage and underlies the pathogenesis of many autoimmune diseases. The neutrophil is the first immune cell recruited into sites of IC deposition and plays a critical role in shaping the overall tissue response. However, the mechanism by which IC initiate and propagate neutrophil infiltration into tissue is not known. Here, using intravital multiphoton joint imaging of IC-induced arthritis in live mice, we found that the complement C5a receptor (C5aR) was the key initiator of neutrophil adhesion on joint endothelium. C5a presented on joint endothelium induced β2 integrin-dependent neutrophil arrest, facilitating neutrophil spreading and transition to crawling, and subsequent leukotriene B4 receptor (BLT1)-mediated extravasation of the first neutrophils. The chemokine receptor CCR1 promoted neutrophil crawling on the joint endothelium while CXCR2 amplified late neutrophil recruitment and survival once in the joint. Thus, imaging arthritis has defined a new paradigm for type III hypersensitivity where C5a directly initiates neutrophil adhesion on the joint endothelium igniting inflammation.
Collapse
Affiliation(s)
- Yoshishige Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chie Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas T Murooka
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward Y Kim
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gail A Newton
- Vascular Research Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nancy D Kim
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bodduluri Haribabu
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Francis W Luscinskas
- Vascular Research Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|