1
|
Li C, Bao W, Zhang H, Lyu Z, Chen Y, Guo Z. Discovery of Brominated Alboflavusins With Anti-MRSA Activities. Front Microbiol 2021; 12:641025. [PMID: 33664724 PMCID: PMC7920986 DOI: 10.3389/fmicb.2021.641025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/27/2021] [Indexed: 11/17/2022] Open
Abstract
As methicillin-resistant Staphylococcus aureus (MRSA) is becoming a serious pathogenic threaten to human health worldwide, there is an urgent need to discover new antibiotics for the treatment of MRSA infections. Alboflavusins (AFNs) are a group of halogenated cyclohexapeptides with anti-MRSA activities. In this study, two novel brominated AFN congeners (compounds 1 and 2) were isolated from the wild-type strain Streptomyces alboflavus sp. 313 that was fermented in the production medium supplemented with NaBr; two new (compounds 3 and 5) and a known (compound 4) dehelogenated AFN congeners were isolated from S. alboflavus ΔafnX, in which the tryptophan halogenase gene afnX was inactivated. The structures of these compounds were assigned by careful NMR and MS analyses. The anti-MRSA activities of varied AFN congeners were assessed against different MRSA strains, which revealed that compounds 1 and 2 with bromine displayed effective activities against the tested MRSA strains. Especially, compound 2 showed good anti-MRSA activity, while compounds 3, 4, and 5 without halogen exhibited weak anti-MRSA activities, outlining the influence of halogen substitution to the bioactivities of AFNs.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wuyundalai Bao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Haoyue Zhang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, China
| | - Zhitang Lyu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengyan Guo
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Widmann C, Ismail M, Sewald N, Niemann HH. Structure of apo flavin-dependent halogenase Xcc4156 hints at a reason for cofactor-soaking difficulties. Acta Crystallogr D Struct Biol 2020; 76:687-697. [PMID: 32627741 PMCID: PMC7336383 DOI: 10.1107/s2059798320007731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/05/2020] [Indexed: 01/18/2023] Open
Abstract
Flavin-dependent halogenases regioselectively introduce halide substituents into electron-rich substrates under mild reaction conditions. For the enzyme Xcc4156 from Xanthomonas campestris, the structure of a complex with the cofactor flavin adenine dinucleotide (FAD) and a bromide ion would be of particular interest as this enzyme exclusively brominates model substrates in vitro. Apo Xcc4156 crystals diffracted to 1.6 Å resolution. The structure revealed an open substrate-binding site lacking the loop regions that close off the active site and contribute to substrate binding in tryptophan halogenases. Therefore, Xcc4156 might accept larger substrates, possibly even peptides. Soaking of apo Xcc4156 crystals with FAD led to crumbling of the intergrown crystals. Around half of the crystals soaked with FAD did not diffract, while in the others there was no electron density for FAD. The FAD-binding loop, which changes its conformation between the apo and the FAD-bound form in related enzymes, is involved in a crystal contact in the apo Xcc4156 crystals. The conformational change that is predicted to occur upon FAD binding would disrupt this crystal contact, providing a likely explanation for the destruction of the apo crystals in the presence of FAD. Soaking with only bromide did not result in bromide bound to the catalytic halide-binding site. Simultaneous soaking with FAD and bromide damaged the crystals more severely than soaking with only FAD. Together, these latter two observations suggest that FAD and bromide bind to Xcc4156 with positive cooperativity. Thus, apo Xcc4156 crystals provide functional insight into FAD and bromide binding, even though neither the cofactor nor the halide is visible in the structure.
Collapse
Affiliation(s)
- Christiane Widmann
- Structural Biochemistry (BCIV), Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Mohamed Ismail
- Organic and Bioorganic Chemistry (OC III), Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry (OC III), Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Hartmut H. Niemann
- Structural Biochemistry (BCIV), Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|