1
|
Bullows JE, Kanak A, Shedrick L, Kiessling C, Aklujkar M, Kostka J, Chin KJ. Anaerobic benzene oxidation in Geotalea daltonii involves activation by methylation and is regulated by the transition state regulator AbrB. Appl Environ Microbiol 2024; 90:e0085624. [PMID: 39287397 PMCID: PMC11497800 DOI: 10.1128/aem.00856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
Benzene is a widespread groundwater contaminant that persists under anoxic conditions. The aim of this study was to more accurately investigate anaerobic microbial degradation pathways to predict benzene fate and transport. Preliminary genomic analysis of Geotalea daltonii strain FRC-32, isolated from contaminated groundwater, revealed the presence of putative aromatic-degrading genes. G. daltonii was subsequently shown to conserve energy for growth on benzene as the sole electron donor and fumarate or nitrate as the electron acceptor. The hbs gene, encoding for 3-hydroxybenzylsuccinate synthase (Hbs), a homolog of the radical-forming, toluene-activating benzylsuccinate synthase (Bss), was upregulated during benzene oxidation in G. daltonii, while the bss gene was upregulated during toluene oxidation. Addition of benzene to the G. daltonii whole-cell lysate resulted in toluene formation, indicating that methylation of benzene was occurring. Complementation of σ54- (deficient) E. coli transformed with the bss operon restored its ability to grow in the presence of toluene, revealing bss to be regulated by σ54. Binding sites for σ70 and the transition state regulator AbrB were identified in the promoter region of the σ54-encoding gene rpoN, and binding was confirmed. Induced expression of abrB during benzene and toluene degradation caused G. daltonii cultures to transition to the death phase. Our results suggested that G. daltonii can anaerobically oxidize benzene by methylation, which is regulated by σ54 and AbrB. Our findings further indicated that the benzene, toluene, and benzoate degradation pathways converge into a single metabolic pathway, representing a uniquely efficient approach to anaerobic aromatic degradation in G. daltonii. IMPORTANCE The contamination of anaerobic subsurface environments including groundwater with toxic aromatic hydrocarbons, specifically benzene, toluene, ethylbenzene, and xylene, has become a global issue. Subsurface groundwater is largely anoxic, and further study is needed to understand the natural attenuation of these compounds. This study elucidated a metabolic pathway utilized by the bacterium Geotalea daltonii capable of anaerobically degrading the recalcitrant molecule benzene using a unique activation mechanism involving methylation. The identification of aromatic-degrading genes and AbrB as a regulator of the anaerobic benzene and toluene degradation pathways provides insights into the mechanisms employed by G. daltonii to modulate metabolic pathways as necessary to thrive in anoxic contaminated groundwater. Our findings contribute to the understanding of novel anaerobic benzene degradation pathways that could potentially be harnessed to develop improved strategies for bioremediation of groundwater contaminants.
Collapse
Affiliation(s)
- James E. Bullows
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Alison Kanak
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Lawrence Shedrick
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | | | - Muktak Aklujkar
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Joel Kostka
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kuk-Jeong Chin
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Pagnier A, Balci B, Shepard EM, Yang H, Drena A, Holliday GL, Hoffman BM, Broderick WE, Broderick JB. Role of ammonia-lyases in the synthesis of the dithiomethylamine ligand during [FeFe]-hydrogenase maturation. J Biol Chem 2024; 300:107760. [PMID: 39260698 DOI: 10.1016/j.jbc.2024.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
The generation of an active [FeFe]-hydrogenase requires the synthesis of a complex metal center, the H-cluster, by three dedicated maturases: the radical S-adenosyl-l-methionine (SAM) enzymes HydE and HydG, and the GTPase HydF. A key step of [FeFe]-hydrogenase maturation is the synthesis of the dithiomethylamine (DTMA) bridging ligand, a process recently shown to involve the aminomethyl-lipoyl-H-protein from the glycine cleavage system, whose methylamine group originates from serine and ammonium. Here we use functional assays together with electron paramagnetic resonance and electron-nuclear double resonance spectroscopies to show that serine or aspartate together with their respective ammonia-lyase enzymes can provide the nitrogen for DTMA biosynthesis during in vitro [FeFe]-hydrogenase maturation. We also report bioinformatic analysis of the hyd operon, revealing a strong association with genes encoding ammonia-lyases, suggesting important biochemical and metabolic connections. Together, our results provide evidence that ammonia-lyases play an important role in [FeFe]-hydrogenase maturation by delivering the ammonium required for dithiomethylamine ligand synthesis.
Collapse
Affiliation(s)
- Adrien Pagnier
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Batuhan Balci
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Eric M Shepard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Hao Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Alex Drena
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Gemma L Holliday
- Digitisation, Pharmaceutical Science, Biopharmaceuticals R&D, AstraZeneca, Macclesfield, United Kingdom
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - William E Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Joan B Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA.
| |
Collapse
|
3
|
Walls WG, Vagstad A, Delridge T, Piel J, Broderick WE, Broderick JB. Direct Detection of the α-Carbon Radical Intermediate Formed by OspD: Mechanistic Insights into Radical S-Adenosyl-l-methionine Peptide Epimerization. J Am Chem Soc 2024; 146:5550-5559. [PMID: 38364824 PMCID: PMC11302384 DOI: 10.1021/jacs.3c13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
OspD is a radical S-adenosyl-l-methionine (SAM) peptide epimerase that converts an isoleucine (Ile) and valine (Val) of the OspA substrate to d-amino acids during biosynthesis of the ribosomally synthesized and post-translationally modified peptide (RiPP) natural product landornamide A. OspD is proposed to carry out this reaction via α-carbon (Cα) H-atom abstraction to form a peptidyl Cα radical that is stereospecifically quenched by hydrogen atom transfer (HAT) from a conserved cysteine (Cys). Here we use site-directed mutagenesis, freeze-quench trapping, isotopic labeling, and electron paramagnetic resonance (EPR) spectroscopy to provide new insights into the OspD catalytic mechanism including the direct observation of the substrate peptide Cα radical intermediate. The putative quenching Cys334 was changed to serine to generate an OspD C334S variant impaired in HAT quenching. The reaction of reduced OspD C334S with SAM and OspA freeze-quenched at 15 s exhibits a doublet EPR signal characteristic of a Cα radical coupled to a single β-H. Using isotopologues of OspA deuterated at either Ile or Val, or both Ile and Val, reveals that the initial Cα radical intermediate forms exclusively on the Ile of OspA. Time-dependent freeze quench coupled with EPR spectroscopy provided evidence for loss of the Ile Cα radical concomitant with gain of a Val Cα radical, directly demonstrating the N-to-C directionality of epimerization by OspD. These results provide direct evidence for the aforementioned OspD-catalyzed peptide epimerization mechanism via a central Cα radical intermediate during RiPP maturation of OspA, a mechanism that may extend to other proteusin peptide epimerases.
Collapse
Affiliation(s)
- William G. Walls
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Anna Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Tyler Delridge
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - William E. Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Joan B. Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, United States
| |
Collapse
|
4
|
Lundahl MN, Yang H, Broderick WE, Hoffman BM, Broderick JB. Pyruvate formate-lyase activating enzyme: The catalytically active 5'-deoxyadenosyl radical caught in the act of H-atom abstraction. Proc Natl Acad Sci U S A 2023; 120:e2314696120. [PMID: 37956301 PMCID: PMC10665898 DOI: 10.1073/pnas.2314696120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023] Open
Abstract
Enzymes of the radical S-adenosyl-l-methionine (radical SAM, RS) superfamily, the largest in nature, catalyze remarkably diverse reactions initiated by H-atom abstraction. Glycyl radical enzyme activating enzymes (GRE-AEs) are a growing class of RS enzymes that generate the catalytically essential glycyl radical of GREs, which in turn catalyze essential reactions in anaerobic metabolism. Here, we probe the reaction of the GRE-AE pyruvate formate-lyase activating enzyme (PFL-AE) with the peptide substrate RVSG734YAV, which mimics the site of glycyl radical formation on the native substrate, pyruvate formate-lyase. Time-resolved freeze-quench electron paramagnetic resonance spectroscopy shows that at short mixing times reduced PFL-AE + SAM reacts with RVSG734YAV to form the central organometallic intermediate, Ω, in which the adenosyl 5'C is covalently bound to the unique iron of the [4Fe-4S] cluster. Freeze-trapping the reaction at longer times reveals the formation of the peptide G734• glycyl radical product. Of central importance, freeze-quenching at intermediate times reveals that the conversion of Ω to peptide glycyl radical is not concerted. Instead, homolysis of the Ω Fe-C5' bond generates the nominally "free" 5'-dAdo• radical, which is captured here by freeze-trapping. During cryoannealing at 77 K, the 5'-dAdo• directly abstracts an H-atom from the peptide to generate the G734• peptide radical trapped in the PFL-AE active site. These observations reveal the 5'-dAdo• radical to be a well-defined intermediate, caught in the act of substrate H-atom abstraction, providing new insights into the mechanistic steps of radical initiation by RS enzymes.
Collapse
Affiliation(s)
- Maike N. Lundahl
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT59717
| | - Hao Yang
- Department of Chemistry, Northwestern University, Evanston, IL60208
| | - William E. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT59717
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL60208
| | - Joan B. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT59717
| |
Collapse
|
5
|
Moody JD, Hill S, Lundahl MN, Saxton AJ, Galambas A, Broderick WE, Lawrence CM, Broderick JB. Computational engineering of previously crystallized pyruvate formate-lyase activating enzyme reveals insights into SAM binding and reductive cleavage. J Biol Chem 2023; 299:104791. [PMID: 37156396 PMCID: PMC10267522 DOI: 10.1016/j.jbc.2023.104791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023] Open
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes are ubiquitous in nature and carry out a broad variety of difficult chemical transformations initiated by hydrogen atom abstraction. Although numerous radical SAM (RS) enzymes have been structurally characterized, many prove recalcitrant to crystallization needed for atomic-level structure determination using X-ray crystallography, and even those that have been crystallized for an initial study can be difficult to recrystallize for further structural work. We present here a method for computationally engineering previously observed crystallographic contacts and employ it to obtain more reproducible crystallization of the RS enzyme pyruvate formate-lyase activating enzyme (PFL-AE). We show that the computationally engineered variant binds a typical RS [4Fe-4S]2+/+ cluster that binds SAM, with electron paramagnetic resonance properties indistinguishable from the native PFL-AE. The variant also retains the typical PFL-AE catalytic activity, as evidenced by the characteristic glycyl radical electron paramagnetic resonance signal observed upon incubation of the PFL-AE variant with reducing agent, SAM, and PFL. The PFL-AE variant was also crystallized in the [4Fe-4S]2+ state with SAM bound, providing a new high-resolution structure of the SAM complex in the absence of substrate. Finally, by incubating such a crystal in a solution of sodium dithionite, the reductive cleavage of SAM is triggered, providing us with a structure in which the SAM cleavage products 5'-deoxyadenosine and methionine are bound in the active site. We propose that the methods described herein may be useful in the structural characterization of other difficult-to-resolve proteins.
Collapse
Affiliation(s)
- James D Moody
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA; Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Sarah Hill
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Maike N Lundahl
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Aubrianna J Saxton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Amanda Galambas
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - William E Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - C Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Joan B Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA.
| |
Collapse
|
6
|
Tunçkanat T, Gendron A, Sadler Z, Neitz A, Byquist S, Lie TJ, Allen KD. Lysine 2,3-Aminomutase and a Newly Discovered Glutamate 2,3-Aminomutase Produce β-Amino Acids Involved in Salt Tolerance in Methanogenic Archaea. Biochemistry 2022; 61:1077-1090. [PMID: 35544775 DOI: 10.1021/acs.biochem.2c00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many methanogenic archaea synthesize β-amino acids as osmolytes that allow survival in high salinity environments. Here, we investigated the radical S-adenosylmethionine (SAM) aminomutases involved in the biosynthesis of Nε-acetyl-β-lysine and β-glutamate in Methanococcus maripaludis C7. Lysine 2,3-aminomutase (KAM), encoded by MmarC7_0106, was overexpressed and purified from Escherichia coli, followed by biochemical characterization. In the presence of l-lysine, SAM, and dithionite, this archaeal KAM had a kcat = 14.3 s-1 and a Km = 19.2 mM. The product was shown to be 3(S)-β-lysine, which is like the well-characterized Clostridium KAM as opposed to the E. coli KAM that produces 3(R)-β-lysine. We further describe the function of MmarC7_1783, a putative radical SAM aminomutase with a ∼160 amino acid extension at its N-terminus. Bioinformatic analysis of the possible substrate-binding residues suggested a function as glutamate 2,3-aminomutase, which was confirmed here through heterologous expression in a methanogen followed by detection of β-glutamate in cell extracts. β-Glutamate has been known to serve as an osmolyte in select methanogens for a long time, but its biosynthetic origin remained unknown until now. Thus, this study defines the biosynthetic routes for β-lysine and β-glutamate in M. maripaludis and expands the importance and diversity of radical SAM enzymes in all domains of life.
Collapse
Affiliation(s)
- Taylan Tunçkanat
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Aleksei Gendron
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Zoie Sadler
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Alex Neitz
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258, United States
| | - Sarah Byquist
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258, United States
| | - Thomas J Lie
- Department of Microbiology, University of Washington, Seattle, Washington 98195, United States
| | - Kylie D Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
7
|
Lundahl MN, Sarksian R, Yang H, Jodts RJ, Pagnier A, Smith DF, Mosquera MA, van der Donk WA, Hoffman BM, Broderick WE, Broderick JB. Mechanism of Radical S-Adenosyl-l-methionine Adenosylation: Radical Intermediates and the Catalytic Competence of the 5'-Deoxyadenosyl Radical. J Am Chem Soc 2022; 144:5087-5098. [PMID: 35258967 PMCID: PMC9524473 DOI: 10.1021/jacs.1c13706] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes employ a [4Fe-4S] cluster and SAM to initiate diverse radical reactions via either H-atom abstraction or substrate adenosylation. Here we use freeze-quench techniques together with electron paramagnetic resonance (EPR) spectroscopy to provide snapshots of the reaction pathway in an adenosylation reaction catalyzed by the radical SAM enzyme pyruvate formate-lyase activating enzyme on a peptide substrate containing a dehydroalanine residue in place of the target glycine. The reaction proceeds via the initial formation of the organometallic intermediate Ω, as evidenced by the characteristic EPR signal with g∥ = 2.035 and g⊥ = 2.004 observed when the reaction is freeze-quenched at 500 ms. Thermal annealing of frozen Ω converts it into a second paramagnetic species centered at giso = 2.004; this second species was generated directly using freeze-quench at intermediate times (∼8 s) and unequivocally identified via isotopic labeling and EPR spectroscopy as the tertiary peptide radical resulting from adenosylation of the peptide substrate. An additional paramagnetic species observed in samples quenched at intermediate times was revealed through thermal annealing while frozen and spectral subtraction as the SAM-derived 5'-deoxyadenosyl radical (5'-dAdo•). The time course of the 5'-dAdo• and tertiary peptide radical EPR signals reveals that the former generates the latter. These results thus support a mechanism in which Ω liberates 5'-dAdo• by Fe-C5' bond homolysis, and the 5'-dAdo• attacks the dehydroalanine residue of the peptide substrate to form the adenosylated peptide radical species. The results thus provide a picture of a catalytically competent 5'-dAdo• intermediate trapped just prior to reaction with the substrate.
Collapse
Affiliation(s)
- Maike N. Lundahl
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Raymond Sarksian
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hao Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard J. Jodts
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Adrien Pagnier
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Donald F. Smith
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Martín A. Mosquera
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William E. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Joan B. Broderick
- Corresponding Author: Joan B. Broderick – Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States;
| |
Collapse
|
8
|
The B 12-independent glycerol dehydratase activating enzyme from Clostridium butyricum cleaves SAM to produce 5'-deoxyadenosine and not 5'-deoxy-5'-(methylthio)adenosine. J Inorg Biochem 2022; 227:111662. [PMID: 34847521 PMCID: PMC8889718 DOI: 10.1016/j.jinorgbio.2021.111662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023]
Abstract
Glycerol dehydratase activating enzyme (GD-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential amino acid backbone radical onto glycerol dehydratase in bacteria under anaerobic conditions. Although GD-AE is closely homologous to other radical SAM activases that have been shown to cleave the S-C(5') bond of SAM to produce 5'-deoxyadenosine (5'-dAdoH) and methionine, GD-AE from Clostridium butyricum has been reported to instead cleave the S-C(γ) bond of SAM to yield 5'-deoxy-5'-(methylthio)adenosine (MTA). Here we re-investigate the SAM cleavage reaction catalyzed by GD-AE and show that it produces the widely observed 5'-dAdoH, and not the less conventional product MTA.
Collapse
|
9
|
Wang Y, Liu R, Zhou P, Wu J, Li W, Wang C, Li H, Li D, Yang J. Visible Light‐Driven Base‐Promoted Radical Cascade Difluoroalkylization‐cyclization‐iodination of 1,6‐Enynes with Ethyl Difluoroiodoacetate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Wang
- Ningxia University School of chemistry and chemical Engineering 539 West Helan Mountains road, Xixia District, Yinchuan 750000 Yinchuan CHINA
| | - Ruyan Liu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Pengsheng Zhou
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Jianglong Wu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Wenshuang Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Chenyu Wang
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Hao Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Dianjun Li
- Ningxia University State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Jinhui Yang
- Ningxia University State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering China, Ning Xia, Yinchuan, Xixia District Ningxia University B 750021 Yinchuan CHINA
| |
Collapse
|
10
|
Shepard EM, Impano S, Duffus BR, Pagnier A, Duschene KS, Betz JN, Byer AS, Galambas A, McDaniel EC, Watts H, McGlynn SE, Peters JW, Broderick WE, Broderick JB. HydG, the "dangler" iron, and catalytic production of free CO and CN -: implications for [FeFe]-hydrogenase maturation. Dalton Trans 2021; 50:10405-10422. [PMID: 34240096 PMCID: PMC9154046 DOI: 10.1039/d1dt01359a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The organometallic H-cluster of the [FeFe]-hydrogenase consists of a [4Fe-4S] cubane bridged via a cysteinyl thiolate to a 2Fe subcluster ([2Fe]H) containing CO, CN-, and dithiomethylamine (DTMA) ligands. The H-cluster is synthesized by three dedicated maturation proteins: the radical SAM enzymes HydE and HydG synthesize the non-protein ligands, while the GTPase HydF serves as a scaffold for assembly of [2Fe]H prior to its delivery to the [FeFe]-hydrogenase containing the [4Fe-4S] cubane. HydG uses l-tyrosine as a substrate, cleaving it to produce p-cresol as well as the CO and CN- ligands to the H-cluster, although there is some question as to whether these are formed as free diatomics or as part of a [Fe(CO)2(CN)] synthon. Here we show that Clostridium acetobutylicum (C.a.) HydG catalyzes formation of multiple equivalents of free CO at rates comparable to those for CN- formation. Free CN- is also formed in excess molar equivalents over protein. A g = 8.9 EPR signal is observed for C.a. HydG reconstituted to load the 5th "dangler" iron of the auxiliary [4Fe-4S][FeCys] cluster and is assigned to this "dangler-loaded" cluster state. Free CO and CN- formation and the degree of activation of [FeFe]-hydrogenase all occur regardless of dangler loading, but are increased 10-35% in the dangler-loaded HydG; this indicates the dangler iron is not essential to this process but may affect relevant catalysis. During HydG turnover in the presence of myoglobin, the g = 8.9 signal remains unchanged, indicating that a [Fe(CO)2(CN)(Cys)] synthon is not formed at the dangler iron. Mutation of the only protein ligand to the dangler iron, H272, to alanine nearly completely abolishes both free CO formation and hydrogenase activation, however results show this is not due solely to the loss of the dangler iron. In experiments with wild type and H272A HydG, and with different degrees of dangler loading, we observe a consistent correlation between free CO/CN- formation and hydrogenase activation. Taken in full, our results point to free CO/CN-, but not an [Fe(CO)2(CN)(Cys)] synthon, as essential species in hydrogenase maturation.
Collapse
Affiliation(s)
- Eric M Shepard
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Stella Impano
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Benjamin R Duffus
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Adrien Pagnier
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Kaitlin S Duschene
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Jeremiah N Betz
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Amanda S Byer
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Amanda Galambas
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Elizabeth C McDaniel
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Hope Watts
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Shawn E McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99163, USA
| | - William E Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Joan B Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
11
|
Abstract
![]()
TYW1 is a radical S-adenosyl-l-methionine
(SAM) enzyme that catalyzes the condensation of pyruvate and N-methylguanosine-containing tRNAPhe, forming
4-demethylwyosine-containing tRNAPhe. Homologues of TYW1
are found in both archaea and eukarya; archaeal homologues consist
of a single domain, while eukaryal homologues contain a flavin binding
domain in addition to the radical SAM domain shared with archaeal
homologues. In this study, TYW1 from Saccharomyces cerevisiae (ScTYW1) was heterologously expressed in Escherichia coli and purified to homogeneity. ScTYW1 is purified with 0.54 ± 0.07 and 4.2 ± 1.9 equiv of
flavin mononucleotide (FMN) and iron, respectively, per mole of protein,
suggesting the protein is ∼50% replete with Fe–S clusters
and FMN. While both NADPH and NADH are sufficient for activity, significantly
more product is observed when used in combination with flavin nucleotides. ScTYW1 is the first example of a radical SAM flavoenzyme
that is active with NAD(P)H alone.
Collapse
Affiliation(s)
- Anthony P Young
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Impano S, Yang H, Shepard EM, Swimley R, Pagnier A, Broderick WE, Hoffman BM, Broderick JB. S-Adenosyl-l-ethionine is a Catalytically Competent Analog of S-Adenosyl-l-methione (SAM) in the Radical SAM Enzyme HydG. Angew Chem Int Ed Engl 2021; 60:4666-4672. [PMID: 33935588 PMCID: PMC8081114 DOI: 10.1002/anie.202014337] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 01/02/2023]
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes initiate biological radical reactions with the 5'-deoxyadenosyl radical (5'-dAdo•). A [4Fe-4S]+ cluster reductively cleaves SAM to form the Ω organometallic intermediate in which the 5'-deoxyadenosyl moiety is directly bound to the unique iron of the [4Fe-4S] cluster, with subsequent liberation of 5'-dAdo•. Here we present synthesis of the SAM analog S-adenosyl-l-ethionine (SAE) and show SAE is a mechanistically-equivalent SAM-alternative for HydG, both supporting enzymatic turnover of substrate tyrosine and forming the organometallic intermediate Ω. Photolysis of SAE bound to HydG forms an ethyl radical trapped in the active site. The ethyl radical withstands prolonged storage at 77 K and its EPR signal is only partially lost upon annealing at 100 K, making it significantly less reactive than the methyl radical formed by SAM photolysis. Upon annealing above 77K, the ethyl radical adds to the [4Fe-4S]2+ cluster, generating an ethyl-[4Fe-4S]3+ organometallic species termed ΩE.
Collapse
Affiliation(s)
- Stella Impano
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - Hao Yang
- Department of Chemistry, Northwestern University, Evanston, IL. USA 60208
| | - Eric M Shepard
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - Ryan Swimley
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - Adrien Pagnier
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - William E Broderick
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - Brian M Hoffman
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - Joan B Broderick
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| |
Collapse
|
13
|
Impano S, Yang H, Shepard EM, Swimley R, Pagnier A, Broderick WE, Hoffman BM, Broderick JB. S
‐Adenosyl‐
l
‐ethionine is a Catalytically Competent Analog of
S
‐Adenosyl‐
l
‐methionine (SAM) in the Radical SAM Enzyme HydG. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Stella Impano
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| | - Hao Yang
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Eric M. Shepard
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| | - Ryan Swimley
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| | - Adrien Pagnier
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| | - William E. Broderick
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| | - Brian M. Hoffman
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Joan B. Broderick
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| |
Collapse
|
14
|
Impano S, Yang H, Jodts RJ, Pagnier A, Swimley R, McDaniel EC, Shepard EM, Broderick WE, Broderick JB, Hoffman BM. Active-Site Controlled, Jahn-Teller Enabled Regioselectivity in Reductive S-C Bond Cleavage of S-Adenosylmethionine in Radical SAM Enzymes. J Am Chem Soc 2021; 143:335-348. [PMID: 33372786 PMCID: PMC7934139 DOI: 10.1021/jacs.0c10925] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Catalysis by canonical radical S-adenosyl-l-methionine (SAM) enzymes involves electron transfer (ET) from [4Fe-4S]+ to SAM, generating an R3S0 radical that undergoes regioselective homolytic reductive cleavage of the S-C5' bond to generate the 5'-dAdo· radical. However, cryogenic photoinduced S-C bond cleavage has regioselectively yielded either 5'-dAdo· or ·CH3, and indeed, each of the three SAM S-C bonds can be regioselectively cleaved in an RS enzyme. This diversity highlights a longstanding central question: what controls regioselective homolytic S-C bond cleavage upon SAM reduction? We here provide an unexpected answer, founded on our observation that photoinduced S-C bond cleavage in multiple canonical RS enzymes reveals two enzyme classes: in one, photolysis forms 5'-dAdo·, and in another it forms ·CH3. The identity of the cleaved S-C bond correlates with SAM ribose conformation but not with positioning and orientation of the sulfonium center relative to the [4Fe-4S] cluster. We have recognized the reduced-SAM R3S0 radical is a (2E) state with its antibonding unpaired electron in an orbital doublet, which renders R3S0 Jahn-Teller (JT)-active and therefore subject to vibronically induced distortion. Active-site forces induce a JT distortion that localizes the odd electron in a single priority S-C antibond, which undergoes regioselective cleavage. In photolytic cleavage those forces act through control of the ribose conformation and are transmitted to the sulfur via the S-C5' bond, but during catalysis thermally induced conformational changes that enable ET from a cluster iron generate dominant additional forces that specifically select S-C5' for cleavage. This motion also can explain how 5'-dAdo· subsequently forms the organometallic intermediate Ω.
Collapse
Affiliation(s)
- Stella Impano
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Hao Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard J Jodts
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Adrien Pagnier
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Ryan Swimley
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Elizabeth C McDaniel
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Eric M Shepard
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - William E Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Joan B Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Pagnier A, Yang H, Jodts RJ, James CD, Shepard EM, Impano S, Broderick WE, Hoffman BM, Broderick JB. Radical SAM Enzyme Spore Photoproduct Lyase: Properties of the Ω Organometallic Intermediate and Identification of Stable Protein Radicals Formed during Substrate-Free Turnover. J Am Chem Soc 2020; 142:18652-18660. [PMID: 32966073 DOI: 10.1021/jacs.0c08585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spore photoproduct lyase is a radical S-adenosyl-l-methionine (SAM) enzyme with the unusual property that addition of SAM to the [4Fe-4S]1+ enzyme absent substrate results in rapid electron transfer to SAM with accompanying homolytic S-C5' bond cleavage. Herein, we demonstrate that this unusual reaction forms the organometallic intermediate Ω in which the unique Fe atom of the [4Fe-4S] cluster is bound to C5' of the 5'-deoxyadenosyl radical (5'-dAdo•). During catalysis, homolytic cleavage of the Fe-C5' bond liberates 5'-dAdo• for reaction with substrate, but here, we use Ω formation without substrate to determine the thermal stability of Ω. The reaction of Geobacillus thermodenitrificans SPL (GtSPL) with SAM forms Ω within ∼15 ms after mixing. By monitoring the decay of Ω through rapid freeze-quench trapping at progressively longer times we find an ambient temperature decay time of the Ω Fe-C5' bond of τ ≈ 5-6 s, likely shortened by enzymatic activation as is the case with the Co-C5' bond of B12. We have further used hand quenching at times up to 10 min, and thus with multiple SAM turnovers, to probe the fate of the 5'-dAdo• radical liberated by Ω. In the absence of substrate, Ω undergoes low-probability conversion to a stable protein radical. The WT enzyme with valine at residue 172 accumulates a Val•; mutation of Val172 to isoleucine or cysteine results in accumulation of an Ile• or Cys• radical, respectively. The structures of the radical in WT, V172I, and V172C variants have been established by detailed EPR/DFT analyses.
Collapse
Affiliation(s)
- Adrien Pagnier
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana. 59717, United States
| | - Hao Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard J Jodts
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher D James
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric M Shepard
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana. 59717, United States
| | - Stella Impano
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana. 59717, United States
| | - William E Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana. 59717, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joan B Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana. 59717, United States
| |
Collapse
|
16
|
Cotton CAR, Bernhardsgrütter I, He H, Burgener S, Schulz L, Paczia N, Dronsella B, Erban A, Toman S, Dempfle M, De Maria A, Kopka J, Lindner SN, Erb TJ, Bar-Even A. Underground isoleucine biosynthesis pathways in E. coli. eLife 2020; 9:e54207. [PMID: 32831171 PMCID: PMC7476758 DOI: 10.7554/elife.54207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/22/2020] [Indexed: 12/26/2022] Open
Abstract
The promiscuous activities of enzymes provide fertile ground for the evolution of new metabolic pathways. Here, we systematically explore the ability of E. coli to harness underground metabolism to compensate for the deletion of an essential biosynthetic pathway. By deleting all threonine deaminases, we generated a strain in which isoleucine biosynthesis was interrupted at the level of 2-ketobutyrate. Incubation of this strain under aerobic conditions resulted in the emergence of a novel 2-ketobutyrate biosynthesis pathway based upon the promiscuous cleavage of O-succinyl-L-homoserine by cystathionine γ-synthase (MetB). Under anaerobic conditions, pyruvate formate-lyase enabled 2-ketobutyrate biosynthesis from propionyl-CoA and formate. Surprisingly, we found this anaerobic route to provide a substantial fraction of isoleucine in a wild-type strain when propionate is available in the medium. This study demonstrates the selective advantage underground metabolism offers, providing metabolic redundancy and flexibility which allow for the best use of environmental carbon sources.
Collapse
Affiliation(s)
| | | | - Hai He
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Simon Burgener
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Luca Schulz
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Beau Dronsella
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Alexander Erban
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Stepan Toman
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Marian Dempfle
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Alberto De Maria
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | | | - Tobias J Erb
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| |
Collapse
|
17
|
Yang H, McDaniel EC, Impano S, Byer AS, Jodts RJ, Yokoyama K, Broderick WE, Broderick JB, Hoffman BM. The Elusive 5'-Deoxyadenosyl Radical: Captured and Characterized by Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Spectroscopies. J Am Chem Soc 2019; 141:12139-12146. [PMID: 31274303 DOI: 10.1021/jacs.9b05926] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The 5'-deoxyadenosyl radical (5'-dAdo·) abstracts a substrate H atom as the first step in radical-based transformations catalyzed by adenosylcobalamin-dependent and radical S-adenosyl-l-methionine (RS) enzymes. Notwithstanding its central biological role, 5'-dAdo· has eluded characterization despite efforts spanning more than a half-century. Here, we report generation of 5'-dAdo· in a RS enzyme active site at 12 K using a novel approach involving cryogenic photoinduced electron transfer from the [4Fe-4S]+ cluster to the coordinated S-adenosylmethionine (SAM) to induce homolytic S-C5' bond cleavage. We unequivocally reveal the structure of this long-sought radical species through the use of electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopies with isotopic labeling, complemented by density-functional computations: a planar C5' (2pπ) radical (∼70% spin occupancy); the C5'(H)2 plane is rotated by ∼37° (experiment)/39° (DFT) relative to the C5'-C4'-(C4'-H) plane, placing a C5'-H antiperiplanar to the ribose-ring oxygen, which helps stabilize the radical against elimination of the 4'-H. The agreement between φ from experiment and in vacuo DFT indicates that the conformation is intrinsic to 5-dAdo· itself, and not determined by its environment.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Elizabeth C McDaniel
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Stella Impano
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Amanda S Byer
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Richard J Jodts
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Kenichi Yokoyama
- Department of Biochemistry , Duke University , Durham , North Carolina 27710 , United States
| | - William E Broderick
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Joan B Broderick
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Brian M Hoffman
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
18
|
Broderick WE, Hoffman BM, Broderick JB. Mechanism of Radical Initiation in the Radical S-Adenosyl-l-methionine Superfamily. Acc Chem Res 2018; 51:2611-2619. [PMID: 30346729 PMCID: PMC6324848 DOI: 10.1021/acs.accounts.8b00356] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The seeds for recognition of the vast superfamily of radical S-adenosyl-l-methionine (SAM) enzymes were sown in the 1960s, when Joachim Knappe found that the dissimilation of pyruvate was dependent on SAM and Fe(II), and Barker and co-workers made similar observations for lysine 2,3-aminomutase. These intriguing observations, coupled with the evidence that SAM and Fe were cofactors in radical catalysis by these enzyme systems, drew us in the 1990s to explore how Fe(II) and SAM initiate radical reactions. Our early work focused on the same enzyme Knappe had originally characterized: the pyruvate formate-lyase activating enzyme (PFL-AE). Our discovery of an iron-sulfur cluster in this enzyme, together with similar findings for other SAM-dependent enzymes at the time, led to the recognition of an emerging class of enzymes that use iron-sulfur clusters to cleave SAM, liberating the 5'-deoxyadenosyl radical (5'-dAdo•) that initiates radical reactions. A major bioinformatics study by Heidi Sofia and co-workers identified the enzyme superfamily denoted Radical SAM, now known to span all kingdoms of life with more than 100,000 unique sequences encoding enzymes that catalyze remarkably diverse reactions. Despite the limited sequence similarity and vastly divergent reactions catalyzed, the radical SAM enzymes appear to employ a common mechanism for initiation of radical chemistry, a mechanism we have helped to clarify over the last 25 years. A reduced [4Fe-4S]+ cluster provides the electron needed for the reductive cleavage of SAM. The resulting [4Fe-4S]2+ cluster can be rereduced either by an external reductant, with SAM acting as a cosubstrate, or by an electron provided during the reformation of SAM in cases where SAM is used as a cofactor. The amino and carboxylate groups of SAM bind to the unique iron of the catalytic [4Fe-4S] cluster, placing the sulfonium of SAM in close proximity to the cluster. Surprising recent results have shown that the initiating enzymatic cleavage of SAM generates an organometallic intermediate prior to liberation of 5'-dAdo•, which initiates radical chemistry on the substrate. This organometallic intermediate, denoted Ω, has a 5'-deoxyadenosyl moiety directly bound to the unique iron of the [4Fe-4S] cluster via the 5'-C, giving a structure that is directly analogous to the Co-(5'-C) bond of the organometallic cofactor adenosylcobalamin. Our observation that this intermediate Ω is formed throughout the superfamily suggests that this is a key intermediate in initiating radical SAM reactions, and that organometallic chemistry is much more broadly relevant in biology than previously thought.
Collapse
Affiliation(s)
- William E. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joan B. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States,Corresponding Author, .
| |
Collapse
|