1
|
Chandrasekhar T, Reddy PCO, Swapna B, Veeranjaneya Reddy L, Anuprasanna V, Dakshayani L, Ramachandra Reddy P, Reddy MC. Algae: the game-changers in biohydrogen sector. Crit Rev Biotechnol 2024:1-21. [PMID: 39142834 DOI: 10.1080/07388551.2024.2387176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 08/16/2024]
Abstract
Biohydrogen (H2) is an efficient form of renewable energy generated from various biological organisms. Specifically, primitive plants such as algae which are photosynthetic organisms can produce several commercial products, including biofuels due to their simple form, short life span, efficient photosynthetic capacity, and ability to grow in non-potable water sources. But these algae are often neglected and considered waste. Several studies have revealed the importance and role of algal species in generating biofuels, especially biohydrogen. Considerable research has been conducted in order to understand hydrogen production from algal sources. This review emphasizes the photolysis of water-based hydrogen production in algae apart from the metabolites fermentation process. The influence of physico-chemical factors, including oxygen scavengers, nanoparticles, and hydrogenases, was highlighted in this review to enhance H2 production from algal species. Also, several algal species used for hydrogen production are summarized in detail. Overall, this review intends to summarize the developments in hydrogen production from algal species keeping in view of excellent prospects. This knowledge certainly would provide a good opportunity for the industrial production of hydrogen using algal species, which is one of the most concerned areas in the energy sector.
Collapse
Affiliation(s)
| | | | - Battana Swapna
- Department of Botany, Vikrama Simhapuri University College, Kavali, India
| | | | | | - Lomada Dakshayani
- Department of Genetics & Genomics, Yogi Vemana University, Kadapa, India
| | | | - Madhava C Reddy
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa, India
| |
Collapse
|
2
|
Kannchen D, Zabret J, Oworah-Nkruma R, Dyczmons-Nowaczyk N, Wiegand K, Löbbert P, Frank A, Nowaczyk MM, Rexroth S, Rögner M. Remodeling of photosynthetic electron transport in Synechocystis sp. PCC 6803 for future hydrogen production from water. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148208. [PMID: 32339488 DOI: 10.1016/j.bbabio.2020.148208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/16/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Photosynthetic microorganisms such as the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) can be exploited for the light-driven synthesis of valuable compounds. Thermodynamically, it is most beneficial to branch-off photosynthetic electrons at ferredoxin (Fd), which provides electrons for a variety of fundamental metabolic pathways in the cell, with the ferredoxin-NADP+ Oxido-Reductase (FNR, PetH) being the main target. In order to re-direct electrons from Fd to another consumer, the high electron transport rate between Fd and FNR has to be reduced. Based on our previous in vitro experiments, corresponding FNR-mutants at position FNR_K190 (Wiegand, K., et al.: "Rational redesign of the ferredoxin-NADP-oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H2-production". Biochim Biophys Acta, 2018) have been generated in Synechocystis cells to study their impact on the cellular metabolism and their potential for a future hydrogen-producing design cell. Out of two promising candidates, mutation FNR_K190D proved to be lethal due to oxidative stress, while FNR_K190A was successfully generated and characterized: The light induced NADPH formation is clearly impaired in this mutant and it shows also major metabolic adaptations like a higher glucose metabolism as evidenced by quantitative mass spectrometric analysis. These results indicate a high potential for the future use of photosynthetic electrons in engineered design cells - for instance for hydrogen production. They also show substantial differences of interacting proteins in an in vitro environment vs. physiological conditions in whole cells.
Collapse
Affiliation(s)
- Daniela Kannchen
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Jure Zabret
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Regina Oworah-Nkruma
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Nina Dyczmons-Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Katrin Wiegand
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Pia Löbbert
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Anna Frank
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Marc Michael Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Sascha Rexroth
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Matthias Rögner
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
3
|
Mebs S, Duan J, Wittkamp F, Stripp ST, Happe T, Apfel UP, Winkler M, Haumann M. Differential Protonation at the Catalytic Six-Iron Cofactor of [FeFe]-Hydrogenases Revealed by 57Fe Nuclear Resonance X-ray Scattering and Quantum Mechanics/Molecular Mechanics Analyses. Inorg Chem 2019; 58:4000-4013. [PMID: 30802044 DOI: 10.1021/acs.inorgchem.9b00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[FeFe]-hydrogenases are efficient biological hydrogen conversion catalysts and blueprints for technological fuel production. The relations between substrate interactions and electron/proton transfer events at their unique six-iron cofactor (H-cluster) need to be elucidated. The H-cluster comprises a four-iron cluster, [4Fe4S], linked to a diiron complex, [FeFe]. We combined 57Fe-specific X-ray nuclear resonance scattering experiments (NFS, nuclear forward scattering; NRVS, nuclear resonance vibrational spectroscopy) with quantum-mechanics/molecular-mechanics computations to study the [FeFe]-hydrogenase HYDA1 from a green alga. Selective 57Fe labeling at only [4Fe4S] or [FeFe], or at both subcomplexes was achieved by protein expression with a 57Fe salt and in vitro maturation with a synthetic diiron site precursor containing 57Fe. H-cluster states were populated under infrared spectroscopy control. NRVS spectral analyses facilitated assignment of the vibrational modes of the cofactor species. This approach revealed the H-cluster structure of the oxidized state (Hox) with a bridging carbon monoxide at [FeFe] and ligand rearrangement in the CO-inhibited state (Hox-CO). Protonation at a cysteine ligand of [4Fe4S] in the oxidized state occurring at low pH (HoxH) was indicated, in contrast to bridging hydride binding at [FeFe] in a one-electron reduced state (Hred). These findings are direct evidence for differential protonation either at the four-iron or diiron subcomplex of the H-cluster. NFS time-traces provided Mössbauer parameters such as the quadrupole splitting energy, which differ among cofactor states, thereby supporting selective protonation at either subcomplex. In combination with data for reduced states showing similar [4Fe4S] protonation as HoxH without (Hred') or with (Hhyd) a terminal hydride at [FeFe], our results imply that coordination geometry dynamics at the diiron site and proton-coupled electron transfer to either the four-iron or the diiron subcomplex discriminate catalytic and regulatory functions of [FeFe]-hydrogenases. We support a reaction cycle avoiding diiron site geometry changes during rapid H2 turnover.
Collapse
Affiliation(s)
| | | | | | | | | | - Ulf-Peter Apfel
- Fraunhofer UMSICHT , Osterfelder Straße 3 , 46047 Oberhausen , Germany
| | | | | |
Collapse
|