1
|
Ge W, Pai H, Zhang J, Zhang C, Lu W. Construction of isopentenol utilization pathway and artificial multifunctional enzyme for miltiradiene synthesis in Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2025; 419:132065. [PMID: 39809383 DOI: 10.1016/j.biortech.2025.132065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/26/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Miltiradiene serves as a pivotal precursor for the synthesis of numerous abietane-type diterpenes with important pharmacological activities. The endogenous mevalonate (MVA) pathway is tightly regulated in Saccharomyces cerevisiae, which limits the availability of precursors for the heterologous production of miltiradiene. In this study, the orthogonal isopentenol utilization pathway (IUP) was constructed and investigated for its adaptability with mitochondria and peroxisomes in S. cerevisiae for the synthesis of miltiradiene. Compartments combinatorial engineering was used to enhance precursor supply and miltiradiene synthesis, thereby elevating the production of miltiradiene to 146.1 mg/L in S. cerevisiae. Furthermore, an artificial multifunctional enzyme, tSmCPS-tSmKSL-PvPT, was constructed by mimicking the natural multifunctional enzyme to enhance the biosynthesis of miltiradiene in S. cerevisiae strain PCM-MT1, which is capable of producing 414.4 mg/L miltiradiene. Finally, the titer of miltiradiene was increased to 1.02 g/L by fed-batch fermentation in a 5 L bioreactor. This study broadens the application of the IUP in S. cerevisiae by integrating compartmentalization and artificial multifunctional enzymes for the synthesis of diterpenes.
Collapse
Affiliation(s)
- Weiwei Ge
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Huihui Pai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Jiale Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, PR China; Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, PR China.
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, PR China; Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, PR China.
| |
Collapse
|
2
|
Song S, Ye C, Jin Y, Dai H, Hu J, Lian J, Pan R. Peroxisome-based metabolic engineering for biomanufacturing and agriculture. Trends Biotechnol 2024; 42:1161-1176. [PMID: 38423802 DOI: 10.1016/j.tibtech.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Subcellular compartmentalization of metabolic pathways plays a crucial role in metabolic engineering. The peroxisome has emerged as a highly valuable and promising compartment for organelle engineering, particularly in the fields of biological manufacturing and agriculture. In this review, we summarize the remarkable achievements in peroxisome engineering in yeast, the industrially popular biomanufacturing chassis host, to produce various biocompounds. We also review progress in plant peroxisome engineering, a field that has already exhibited high potential in both biomanufacturing and agriculture. Moreover, we outline various experimentally validated strategies to improve the efficiency of engineered pathways in peroxisomes, as well as prospects of peroxisome engineering.
Collapse
Affiliation(s)
- Shuyan Song
- State Key Laboratory of Rice Biology and Breeding, College of Chemical and Biological Engineering, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Cuifang Ye
- State Key Laboratory of Rice Biology and Breeding, College of Chemical and Biological Engineering, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Yijun Jin
- State Key Laboratory of Rice Biology and Breeding, College of Chemical and Biological Engineering, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Huaxin Dai
- Beijing Life Science Academy, Changping 102209, Beijing, China
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Jiazhang Lian
- State Key Laboratory of Rice Biology and Breeding, College of Chemical and Biological Engineering, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China.
| | - Ronghui Pan
- State Key Laboratory of Rice Biology and Breeding, College of Chemical and Biological Engineering, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China.
| |
Collapse
|
3
|
Yang S, Chen R, Cao X, Wang G, Zhou YJ. De novo biosynthesis of the hops bioactive flavonoid xanthohumol in yeast. Nat Commun 2024; 15:253. [PMID: 38177132 PMCID: PMC10766616 DOI: 10.1038/s41467-023-44654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
The flavonoid xanthohumol is an important flavor substance in the brewing industry that has a wide variety of bioactivities. However, its unstable structure results in its low content in beer. Microbial biosynthesis is considered a sustainable and economically viable alternative. Here, we harness the yeast Saccharomyces cerevisiae for the de novo biosynthesis of xanthohumol from glucose by balancing the three parallel biosynthetic pathways, prenyltransferase engineering, enhancing precursor supply, constructing enzyme fusion, and peroxisomal engineering. These strategies improve the production of the key xanthohumol precursor demethylxanthohumol (DMX) by 83-fold and achieve the de novo biosynthesis of xanthohumol in yeast. We also reveal that prenylation is the key limiting step in DMX biosynthesis and develop tailored metabolic regulation strategies to enhance the DMAPP availability and prenylation efficiency. Our work provides feasible approaches for systematically engineering yeast cell factories for the de novo biosynthesis of complex natural products.
Collapse
Affiliation(s)
- Shan Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruibing Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
4
|
Sandor A, Samalova M, Brandizzi F, Kriechbaumer V, Moore I, Fricker MD, Sweetlove LJ. Characterization of intracellular membrane structures derived from a massive expansion of endoplasmic reticulum (ER) membrane due to synthetic ER-membrane-resident polyproteins. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:45-59. [PMID: 37715992 PMCID: PMC10735356 DOI: 10.1093/jxb/erad364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is amenable to major restructuring. Introduction of recombinant ER-membrane-resident proteins that form homo oligomers is a known method of inducing ER proliferation: interaction of the proteins with each other alters the local structure of the ER network, leading to the formation large aggregations of expanded ER, sometimes leading to the formation of organized smooth endoplasmic reticulum (OSER). However, these membrane structures formed by ER proliferation are poorly characterized and this hampers their potential development for plant synthetic biology. Here, we characterize a range of ER-derived membranous compartments in tobacco and show how the nature of the polyproteins introduced into the ER membrane affect the morphology of the final compartment. We show that a cytosol-facing oligomerization domain is an essential component for compartment formation. Using fluorescence recovery after photobleaching, we demonstrate that although the compartment retains a connection to the ER, a diffusional barrier exists to both the ER and the cytosol associated with the compartment. Using quantitative image analysis, we also show that the presence of the compartment does not disrupt the rest of the ER network. Moreover, we demonstrate that it is possible to recruit a heterologous, bacterial enzyme to the compartment, and for the enzyme to accumulate to high levels. Finally, transgenic Arabidopsis constitutively expressing the compartment-forming polyproteins grew and developed normally under standard conditions.
Collapse
Affiliation(s)
- Andras Sandor
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Marketa Samalova
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Ian Moore
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Mark D Fricker
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Lee J Sweetlove
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
5
|
Cao C, Zhang H, Cao X, Kong S, Zhu B, Lin X, Zhou YJ. Construction and Optimization of Nonclassical Isoprenoid Biosynthetic Pathways in Yeast Peroxisomes for (+)-Valencene Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37437260 DOI: 10.1021/acs.jafc.3c02932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Isoprenoids are a kind of natural product with various activities, but their plant extraction suffers low concentration. The rapid development of synthetic biology offers a sustainable route for supply of high-value-added natural products by engineering microorganisms. However, the complexity of cellular metabolism makes engineering endogenous isoprenoid biosynthetic pathways with metabolic interaction difficult. Here, for the first time, we constructed and optimized three types of isoprenoid pathways (the Haloarchaea-type, Thermoplasma-type, and isoprenoid alcohol pathway) in yeast peroxisomes for the synthesis of sesquiterpene (+)-valencene. In yeast, the Haloarchaea-type MVA pathway is more effective than the classical MVA pathway. MVK and IPK were determined to be the rate-limiting steps of the Haloarchaea-type MVA pathway, and the production of 869 mg/L (+)-valencene under fed-batch fermentation in shake flasks was realized. This work expands isoprenoid synthesis in eukaryotes and provides a more efficient pathway for isoprenoid synthesis.
Collapse
Affiliation(s)
- Chunyang Cao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Haiyan Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Sijia Kong
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| |
Collapse
|
6
|
Wang R, Liu X, Lv B, Sun W, Li C. Designing Intracellular Compartments for Efficient Engineered Microbial Cell Factories. ACS Synth Biol 2023; 12:1378-1395. [PMID: 37083286 DOI: 10.1021/acssynbio.2c00671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
With the rapid development of synthetic biology, various kinds of microbial cell factories (MCFs) have been successfully constructed to produce high-value-added compounds. However, the complexity of metabolic regulation and pathway crosstalk always cause issues such as intermediate metabolite accumulation, byproduct generation, and metabolic burden in MCFs, resulting in low efficiencies and low yields of industrial biomanufacturing. Such issues could be solved by spatially rearranging the pathways using intracellular compartments. In this review, design strategies are summarized and discussed based on the types and characteristics of natural and artificial subcellular compartments. This review systematically presents information for the construction of efficient MCFs with intracellular compartments in terms of four aspects of design strategy goals: (1) improving local reactant concentration; (2) intercepting and isolating competing pathways; (3) providing specific reaction substances and environments; and (4) storing and accumulating products.
Collapse
Affiliation(s)
- Ruwen Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xin Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Wentao Sun
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Center for Synthetic and System Biology, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
7
|
Chen L, Xiao W, Yao M, Wang Y, Yuan Y. Compartmentalization engineering of yeasts to overcome precursor limitations and cytotoxicity in terpenoid production. Front Bioeng Biotechnol 2023; 11:1132244. [PMID: 36911190 PMCID: PMC9997727 DOI: 10.3389/fbioe.2023.1132244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Metabolic engineering strategies for terpenoid production have mainly focused on bottlenecks in the supply of precursor molecules and cytotoxicity to terpenoids. In recent years, the strategies involving compartmentalization in eukaryotic cells has rapidly developed and have provided several advantages in the supply of precursors, cofactors and a suitable physiochemical environment for product storage. In this review, we provide a comprehensive analysis of organelle compartmentalization for terpenoid production, which can guide the rewiring of subcellular metabolism to make full use of precursors, reduce metabolite toxicity, as well as provide suitable storage capacity and environment. Additionally, the strategies that can enhance the efficiency of a relocated pathway by increasing the number and size of organelles, expanding the cell membrane and targeting metabolic pathways in several organelles are also discussed. Finally, the challenges and future perspectives of this approach for the terpenoid biosynthesis are also discussed.
Collapse
Affiliation(s)
- Lifei Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Spatial-temporal regulation of fatty alcohol biosynthesis in yeast. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:141. [PMID: 36527110 PMCID: PMC9758912 DOI: 10.1186/s13068-022-02242-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Construction of efficient microbial cell factories is one of the core steps for establishing green bio-manufacturing processes. However, the complex metabolic regulation makes it challenging in driving the metabolic flux toward the product biosynthesis. Dynamically coupling the biosynthetic pathways with the cellular metabolism at spatial-temporal manner should be helpful for improving the production with alleviating the cellular stresses. RESULTS In this study, we observed the mismatch between fatty alcohol biosynthesis and cellular metabolism, which compromised the fatty alcohol production in Saccharomyces cerevisiae. To enhance the fatty alcohol production, we spatial-temporally regulated fatty alcohol biosynthetic pathway by peroxisomal compartmentalization (spatial) and dynamic regulation of gene expression (temporal). In particular, fatty acid/acyl-CoA responsive promoters were identified by comparative transcriptional analysis, which helped to dynamically regulate the expression of acyl-CoA reductase gene MaFAR1 and improved fatty alcohol biosynthesis by 1.62-fold. Furthermore, enhancing the peroxisomal supply of acyl-CoA and NADPH further improved fatty alcohol production to 282 mg/L, 2.52 times higher than the starting strain. CONCLUSIONS This spatial-temporal regulation strategy partially coordinated fatty alcohol biosynthesis with cellular metabolism including peroxisome biogenesis and precursor supply, which should be applied for production of other products in microbes.
Collapse
|
9
|
Mast FD, Rachubinski RA, Aitchison JD. Peroxisome prognostications: Exploring the birth, life, and death of an organelle. J Cell Biol 2020; 219:133827. [PMID: 32211898 PMCID: PMC7054992 DOI: 10.1083/jcb.201912100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes play a central role in human health and have biochemical properties that promote their use in many biotechnology settings. With a primary role in lipid metabolism, peroxisomes share a niche with lipid droplets within the endomembrane-secretory system. Notably, factors in the ER required for the biogenesis of peroxisomes also impact the formation of lipid droplets. The dynamic interface between peroxisomes and lipid droplets, and also between these organelles and the ER and mitochondria, controls their metabolic flux and their dynamics. Here, we review our understanding of peroxisome biogenesis to propose and reframe models for understanding how peroxisomes are formed in cells. To more fully understand the roles of peroxisomes and to take advantage of their many properties that may prove useful in novel therapeutics or biotechnology applications, we recast mechanisms controlling peroxisome biogenesis in a framework that integrates inference from these models with experimental data.
Collapse
Affiliation(s)
- Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA
| | | | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA.,Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|