Hecw controls oogenesis and neuronal homeostasis by promoting the liquid state of ribonucleoprotein particles.
Nat Commun 2021;
12:5488. [PMID:
34531401 PMCID:
PMC8446043 DOI:
10.1038/s41467-021-25809-8]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/31/2021] [Indexed: 01/17/2023] Open
Abstract
Specialised ribonucleoprotein (RNP) granules are a hallmark of polarized cells, like neurons and germ cells. Among their main functions is the spatial and temporal modulation of the activity of specific mRNA transcripts that allow specification of primary embryonic axes. While RNPs composition and role are well established, their regulation is poorly defined. Here, we demonstrate that Hecw, a newly identified Drosophila ubiquitin ligase, is a key modulator of RNPs in oogenesis and neurons. Hecw depletion leads to the formation of enlarged granules that transition from a liquid to a gel-like state. Loss of Hecw activity results in defective oogenesis, premature aging and climbing defects associated with neuronal loss. At the molecular level, reduced ubiquitination of the Fmrp impairs its translational repressor activity, resulting in altered Orb expression in nurse cells and Profilin in neurons.
Ribonucleoprotein (RNP) granules are responsible for mRNA transport and local translation required for neuronal and oocyte maturation. Here the authors show that loss of the Drosophila Ub ligase Hecw enlarges RNP granules, leads to a liquid to gel-like transition, and results in defective oogenesis and neuronal loss.
Collapse