1
|
Gong B, Yao Z, Zhou C, Wang W, Sun L, Han J. Glucagon-like peptide-1 analogs: Miracle drugs are blooming? Eur J Med Chem 2024; 269:116342. [PMID: 38531211 DOI: 10.1016/j.ejmech.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by L cells in the small intestine, assumes a central role in managing type 2 diabetes mellitus (T2DM) and obesity. Its influence on insulin secretion and gastric emptying positions it as a therapeutic linchpin. However, the limited applicability of native GLP-1 stems from its short half-life, primarily due to glomerular filtration and the inactivating effect of dipeptidyl peptidase-IV (DPP-IV). To address this, various structural modification strategies have been developed to extend GLP-1's half-life. Despite the commendable efficacy displayed by current GLP-1 receptor agonists, inherent limitations persist. A paradigm shift emerges with the advent of unimolecular multi-agonists, such as the recently introduced tirzepatide, wherein GLP-1 is ingeniously combined with other gastrointestinal hormones. This novel approach has captured the spotlight within the diabetes and obesity research community. This review summarizes the physiological functions of GLP-1, systematically explores diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects that lie ahead for GLP-1 analogs.
Collapse
Affiliation(s)
- Binbin Gong
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Zhihong Yao
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Chenxu Zhou
- College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Wenxi Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Lidan Sun
- College of Medicine, Jiaxing University, Jiaxing, 314001, China.
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
2
|
V V, Achar RR, M.U H, N A, T YS, Kameshwar VH, Byrappa K, Ramadas D. Venom peptides - A comprehensive translational perspective in pain management. Curr Res Toxicol 2021; 2:329-340. [PMID: 34604795 PMCID: PMC8473576 DOI: 10.1016/j.crtox.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
Venom peptides have been evolving complex therapeutic interventions that potently and selectively modulate a range of targets such as ion channels, receptors, and signaling pathways of physiological processes making it potential therapeutic. Several venom peptides were deduced in vivo for clinical development targeting pain management, diabetes, cardiovascular diseases, antimicrobial activity. Several contributions have been detailed for a clear perspective for a better understanding of venomous animals, their venom, and their pharmacological effects. Here we unravel and summarize the recent advances in wide venom peptides across varieties of species for their therapeutics prospects.
Collapse
Affiliation(s)
- Vidya V
- K. S Hegde Medical Academy, NITTE (Deemed to be) University, Mangalore 575015, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, S.S. Nagar, Mysuru 570 015, Karnataka, India
| | - Himathi M.U
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, S.S. Nagar, Mysuru 570 015, Karnataka, India
| | - Akshita N
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, S.S. Nagar, Mysuru 570 015, Karnataka, India
| | - Yogish Somayaji T
- Department of Post Graduate Studies and Research in Biochemistry, St. Aloysius College (Autonomous), Mangalore 575003, Karnataka, India
| | - Vivek Hamse Kameshwar
- School of Natural Science, Adichunchanagiri University, B.G. Nagara-571448, Nangamangala, Mandya, India
- School of Natural Sciences, ACU-CRI, Adichunchanagiri University, BGSIT Campus, B.G. Nagara-571448, Nagamangala, Mandya, India
| | - K. Byrappa
- School of Natural Sciences, ACU-CRI, Adichunchanagiri University, BGSIT Campus, B.G. Nagara-571448, Nagamangala, Mandya, India
- Center for Material Science and Technology, Vijnana Bhavan, University of Mysore, Mysuru, Karnataka, India
| | - Dinesha Ramadas
- Adichunchanagiri Institute for Molecular Medicine, AIMS, Adichunchanagiri University, B.G. Nagara-571448, Nagamangala, Mandya, India
| |
Collapse
|
3
|
Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules 2021; 22:2299-2324. [PMID: 33957752 DOI: 10.1021/acs.biomac.1c00160] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptide/protein therapeutics have been significantly applied in the clinical treatment of various diseases such as cancer, diabetes, etc. owing to their high biocompatibility, specificity, and therapeutic efficacy. However, due to their immunogenicity, instability stemming from its complex tertiary and quaternary structure, vulnerability to enzyme degradation, and rapid renal clearance, the clinical application of protein/peptide therapeutics is significantly confined. Though nanotechnology has been demonstrated to prevent enzyme degradation of the protein therapeutics and thus enhance the half-life, issues such as initial burst release and uncontrollable release kinetics are still unsolved. Moreover, the traditional administration method results in poor patient compliance, limiting the clinical application of protein/peptide therapeutics. Exploiting the sustained-release formulations for more controllable delivery of protein/peptide therapeutics to decrease the frequency of injection and enhance patient compliance is thus greatly meaningful. In this review, we comprehensively summarize the substantial advancements of protein/peptide sustained-release systems in the past decades. In addition, the advantages and disadvantages of all these sustained-release systems in clinical application together with their future challenges are also discussed in this review.
Collapse
|
4
|
Ding Y, Ting JP, Liu J, Al-Azzam S, Pandya P, Afshar S. Impact of non-proteinogenic amino acids in the discovery and development of peptide therapeutics. Amino Acids 2020; 52:1207-1226. [PMID: 32945974 PMCID: PMC7544725 DOI: 10.1007/s00726-020-02890-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
With the development of modern chemistry and biology, non-proteinogenic amino acids (NPAAs) have become a powerful tool for developing peptide-based drug candidates. Drug-like properties of peptidic medicines, due to the smaller size and simpler structure compared to large proteins, can be changed fundamentally by introducing NPAAs in its sequence. While peptides composed of natural amino acids can be used as drug candidates, the majority have shown to be less stable in biological conditions. The impact of NPAA incorporation can be extremely beneficial in improving the stability, potency, permeability, and bioavailability of peptide-based therapies. Conversely, undesired effects such as toxicity or immunogenicity should also be considered. The impact of NPAAs in the development of peptide-based therapeutics is reviewed in this article. Further, numerous examples of peptides containing NPAAs are presented to highlight the ongoing development in peptide-based therapeutics.
Collapse
Affiliation(s)
- Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA, 17605, USA
| | - Priyanka Pandya
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA.
| |
Collapse
|
5
|
Lear S, Pflimlin E, Zhou Z, Huang D, Weng S, Nguyen-Tran V, Joseph SB, Roller S, Peterson S, Li J, Tremblay M, Schultz PG, Shen W. Engineering of a Potent, Long-Acting NPY2R Agonist for Combination with a GLP-1R Agonist as a Multi-Hormonal Treatment for Obesity. J Med Chem 2020; 63:9660-9671. [PMID: 32844654 DOI: 10.1021/acs.jmedchem.0c00740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bariatric surgery results in increased intestinal secretion of hormones GLP-1 and anorexigenic PYY, which is believed to contribute to the clinical efficacy associated with the procedure. This observation raises the question whether combination treatment with gut hormone analogs might recapitulate the efficacy and mitigate the significant risks associated with surgery. Despite PYY demonstrating excellent efficacy and safety profiles with regard to food intake reduction, weight loss, and glucose control in preclinical animal models, PYY-based therapeutic development remains challenging given a low serum stability and half-life for the native peptide. Here, combined peptide stapling and PEG-fatty acid conjugation affords potent PYY analogs with >14 h rat half-lives, which are expected to translate into a human half-life suitable for once-weekly dosing. Excellent efficacy in glucose control, food intake reduction, and weight loss for lead candidate 22 in combination with our previously reported long-acting GLP-1 analog is demonstrated in a diet-induced obesity mouse model.
Collapse
Affiliation(s)
- Sam Lear
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Elsa Pflimlin
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Zhihong Zhou
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - David Huang
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Sharon Weng
- Intarcia Therapeutics, Inc., Research Triangle Park, 6 Davis Drive, Durham, North Carolina 27709, United States
| | - Van Nguyen-Tran
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Sean B Joseph
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Shane Roller
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Scott Peterson
- Intarcia Therapeutics, Inc., Research Triangle Park, 6 Davis Drive, Durham, North Carolina 27709, United States
| | - Jing Li
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Matthew Tremblay
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Peter G Schultz
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Weijun Shen
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Lear S, Seo H, Lee C, Lei L, Amso Z, Huang D, Zou H, Zhou Z, Nguyen-Tran VTB, Shen W. Recombinant Expression and Stapling of a Novel Long-Acting GLP-1R Peptide Agonist. Molecules 2020; 25:molecules25112508. [PMID: 32481528 PMCID: PMC7321126 DOI: 10.3390/molecules25112508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
Owing to their pleiotropic metabolic benefits, glucagon-like peptide-1 receptor (GLP-1R) agonists have been successfully utilized for treating metabolic diseases, such as type 2 diabetes and obesity. As part of our efforts in developing long-acting peptide therapeutics, we have previously reported a peptide engineering strategy that combines peptide side chain stapling with covalent integration of a serum protein-binding motif in a single step. Herein, we have used this strategy to develop a second generation extendin-4 analog rigidified with a symmetrical staple, which exhibits an excellent in vivo efficacy in an animal model of diabetes and obesity. To simplify the scale-up manufacturing of the lead GLP-1R agonist, a semisynthesis protocol was successfully developed, which involves recombinant expression of the linear peptide followed by attachment of a polyethylene glycol (PEG)-fatty acid staple in a subsequent chemical reaction step.
Collapse
|
7
|
Anananuchatkul T, Chang IV, Miki T, Tsutsumi H, Mihara H. Construction of a Stapled α-Helix Peptide Library Displayed on Phage for the Screening of Galectin-3-Binding Peptide Ligands. ACS OMEGA 2020; 5:5666-5674. [PMID: 32226843 PMCID: PMC7097893 DOI: 10.1021/acsomega.9b03461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
A stapled α-helix peptide library was designed and constructed using a chemically modified phage display system for screening stapled-peptide ligands against target proteins. The α-helix peptide library, with two cysteine residues on the opposite side of the randomized face, was modified with a rigid hydrocarbon staple linker on a phage. The stapled α-helix peptide phage library was screened against galectin-3 (Gal-3), a cancer-related galactose-binding protein. The obtained stapled peptides showed a high binding affinity (K d = 0.45 μM) despite being nonsugar ligands. The stapled modification played important roles in stabilizing the α-helical structure that contributed to the high binding affinity to Gal-3. In addition, the best stapled peptide ligands showed specific binding to Gal-3 among various carbohydrate-binding proteins. Thus, the designed α-helix peptide phage library with a constrained structure by the staple linker will advance the discovery of peptide ligands with improved specificity and affinity.
Collapse
|
8
|
Pan H, Xie Y, Lu W, Chen Y, Lu Z, Zhen J, Wang W, Shang A. Engineering an enhanced thrombin-based GLP-1 analog with long-lasting glucose-lowering and efficient weight reduction. RSC Adv 2019; 9:30707-30714. [PMID: 35529389 PMCID: PMC9072222 DOI: 10.1039/c9ra06771j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/20/2019] [Indexed: 11/21/2022] Open
Abstract
Peptides are considered as potent therapeutic drugs primarily due to the exquisite potency and selectivity to targets. However, the development and clinical application of peptide drugs were severely limited by the poor in vivo lifespans. Here, we designed an improved small albumin-binding polypeptide that can associate with human serum albumin (HSA) and liberate the bioactive peptide. Using glucagon-like peptide-1 (GLP-1) as a model, two new long-lasting GLP-1 analogs (termed XTS1 and XTS2) containing an albumin-binding domain, a protease-cleavable linker and a mutated GLP-1(A8Aib) were designed to demonstrate the sustained release of GLP-1 due to the plasma thrombin (TBN) digestion. Two XTS peptides were prepared of high purity (>99%) and accurate molecular weight determined by reversed high-performance liquid chromatography and mass spectrometry, respectively. In vitro measurements of surface plasmon resonance indicated that XTS1 associate with serum albumins of all species with higher affinity compared with XTS2. Metabolic stability of XTS1 in vitro in human plasma was also better than that of XTS2. Protease cleavage assay results of XTS peptides demonstrated the controlled-release of transient GLP-1 from the XTS1 and XTS2 mixture after thrombin-catalyzed hydrolysis. Then the intraperitoneal glucose tolerance test (IPGTT) showed that the glucose-lowering efficacies of XTS1 were in a dosage-dependent manner within the range of 0.1–0.9 mg kg−1. In addition, XTS1 showed similar hypoglycemic intensity and significantly longer action duration compared to Liraglutide in both multiple IPGTTs and hypoglycemic duration test. Apparently extended plasma half-lives of ∼2.3 and ∼3.5 days were observed after a single subcutaneous administration of XTS1 (0.9 mg kg−1) in rats and cynomolgus monkeys, respectively. Furthermore, twice-weekly subcutaneously dosed XTS1 in db/db mice achieved long-term beneficial effects on body weight, hemoglobin A1C (HbA1C) lowering and the function of pancreatic beta cells. These studies support that XTS1 exerts potential as a therapeutic drug for the treatment of T2DM. Peptides are considered as potent therapeutic drugs primarily due to the exquisite potency and selectivity to targets.![]()
Collapse
Affiliation(s)
- Hongchao Pan
- Department of Laboratory Medicine, Shanghai Simple Gene Medical Laboratory Shanghai 200025 P.R. China
| | - Yini Xie
- Department of Laboratory Medicine, The People's Hospital of Jiedong Jieyang 515500 P. R. China
| | - Wenying Lu
- Department of Experimental Medicine Center, The Sixth People's Hospital of Yancheng City Yancheng 224001 P. R. China
| | - Yin Chen
- Key Laboratory of Biological Medicine, Department of Life Science and Technology, Jinan University 51000 P. R. China
| | - Zhao Lu
- Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University Nanjing 210000 P. R. China
| | - Jun Zhen
- Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University Nanjing 210000 P. R. China
| | - Weiwei Wang
- Department of Experimental Medicine Center, The Sixth People's Hospital of Yancheng City Yancheng 224001 P. R. China
| | - Anquan Shang
- Department of Laboratory Medicine, Tongji Hospital of Tongji University Shanghai 200065 P. R. China
| |
Collapse
|
9
|
Pflimlin E, Lear S, Lee C, Yu S, Zou H, To A, Joseph S, Nguyen-Tran V, Tremblay MS, Shen W. Design of a Long-Acting and Selective MEG-Fatty Acid Stapled Prolactin-Releasing Peptide Analog. ACS Med Chem Lett 2019; 10:1166-1172. [PMID: 31413801 DOI: 10.1021/acsmedchemlett.9b00182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023] Open
Abstract
Anorexigenic peptides offer promise as potential therapies targeting the escalating global obesity epidemic. Prolactin-releasing peptide (PrRP), a novel member of the RFamide family secreted by the hypothalamus, shows therapeutic potential by decreasing food intake and body weight in rodent models via GPR10 activation. Here we describe the design of a long-acting PrRP using our recently developed novel multiple ethylene glycol-fatty acid (MEG-FA) stapling platform. By incorporating serum albumin binding fatty acids onto a covalent side chain staple, we have generated a series of MEG-FA stapled PrRP analogs with enhanced serum stability and in vivo half-life. Our lead compound 18-S4 exhibits good in vitro potency and selectivity against GPR10, improved serum stability, and extended in vivo half-life (7.8 h) in mouse. Furthermore, 18-S4 demonstrates a potent body weight reduction effect in a diet-induced obesity (DIO) mouse model, representing a promising long-acting PrRP analog for further evaluation in the chronic obesity setting.
Collapse
Affiliation(s)
- Elsa Pflimlin
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Sam Lear
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Candy Lee
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Shan Yu
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Huafei Zou
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Andrew To
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Sean Joseph
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Van Nguyen-Tran
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Matthew S. Tremblay
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Weijun Shen
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| |
Collapse
|