1
|
Tan RY, Ilham Z, Wan-Mohtar WAAQI, Abdul Halim-Lim S, Ahmad Usuldin SR, Ahmad R, Adlim M. Mushroom oils: A review of their production, composition, and potential applications. Heliyon 2024; 10:e31594. [PMID: 38845934 PMCID: PMC11153096 DOI: 10.1016/j.heliyon.2024.e31594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
This review delves into the world of mushroom oils, highlighting their production, composition, and versatile applications. Despite mushrooms' overall low lipid content, their fatty acid composition, rich in essential fatty acids like linoleic acid and oleic acid, proves nutritionally significant. Variations in fatty acid profiles across mushroom species and the prevalence of unsaturated fats contribute to their cardiovascular health benefits. The exploration extends to mushroom essential oils, revealing diverse volatile compounds through extraction methods like hydrodistillation and solvent-assisted flavor evaporation (SAFE). The identification of 1-octen-3-ol as a key contributor to the distinct "mushroom flavor" adds a nuanced perspective. The focus broadens to applications, encompassing culinary and industrial uses with techniques like cold pressing and supercritical fluid extraction (SFE). Mushroom oils, with their unique nutritional and flavor profiles, enhance gastronomic experiences. Non-food applications in cosmetics and biofuels underscore the oils' versatility. The nutritional composition, enriched with essential fatty acids, bioactive compositions, and trace elements, is explored for potential health benefits. Bioactive compounds such as phenolic compounds and terpenes contribute to antioxidant and anti-inflammatory properties, positioning mushroom oils as nutritional powerhouses. In short, this concise review synthesizes the intricate world of mushroom oils, emphasizing their nutritional significance, extraction methodologies, and potential health benefits. The comprehensive overview underscores mushroom oils as a promising area for further exploration and utilization. The characteristics of mushroom biomass oil for the use in various industries are influenced by the mushroom species, chemical composition, biochemical synthesis of mushroom, and downstream processes including extraction, purification and characterization. Therefore, further research and exploration need to be done to achieve a circular bioeconomy with the integration of SDGs, waste reduction, and economic stimulation, to fully utilize the benefits of mushroom, a valuable gift of nature.
Collapse
Affiliation(s)
- Rui Yeong Tan
- Biomass Energy Laboratory, Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Functional Omics and Bioprocess Development Laboratory, Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zul Ilham
- Biomass Energy Laboratory, Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sarina Abdul Halim-Lim
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Seri Kembangan, Selangor Darul Ehsan, Malaysia
| | - Siti Rokhiyah Ahmad Usuldin
- Agro-Biotechnology Institute, Malaysia (ABI), National Institutes of Biotechnology Malaysia (NIMB), HQ MARDI, 43400, Serdang, Selangor, Malaysia
| | - Rahayu Ahmad
- Halal Action Laboratory, Kolej GENIUS Insan, Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Muhammad Adlim
- Chemistry Department, FKIP, Universitas Syiah Kuala, Darussalam Banda Aceh, 23111, Indonesia
| |
Collapse
|
2
|
McNutt A, Bisiriyu F, Song S, Vyas A, Hutchison GR, Koes DR. Conformer Generation for Structure-Based Drug Design: How Many and How Good? J Chem Inf Model 2023; 63:6598-6607. [PMID: 37903507 PMCID: PMC10647020 DOI: 10.1021/acs.jcim.3c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023]
Abstract
Conformer generation, the assignment of realistic 3D coordinates to a small molecule, is fundamental to structure-based drug design. Conformational ensembles are required for rigid-body matching algorithms, such as shape-based or pharmacophore approaches, and even methods that treat the ligand flexibly, such as docking, are dependent on the quality of the provided conformations due to not sampling all degrees of freedom (e.g., only sampling torsions). Here, we empirically elucidate some general principles about the size, diversity, and quality of the conformational ensembles needed to get the best performance in common structure-based drug discovery tasks. In many cases, our findings may parallel "common knowledge" well-known to practitioners of the field. Nonetheless, we feel that it is valuable to quantify these conformational effects while reproducing and expanding upon previous studies. Specifically, we investigate the performance of a state-of-the-art generative deep learning approach versus a more classical geometry-based approach, the effect of energy minimization as a postprocessing step, the effect of ensemble size (maximum number of conformers), and construction (filtering by root-mean-square deviation for diversity) and how these choices influence the ability to recapitulate bioactive conformations and perform pharmacophore screening and molecular docking.
Collapse
Affiliation(s)
- Andrew
T. McNutt
- Department
of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Fatimah Bisiriyu
- The
Neighborhood Academy, Pittsburgh, Pennsylvania 15206, United States
| | - Sophia Song
- Upper
St. Clair High School, Pittsburgh, Pennsylvania 15241, United States
| | - Ananya Vyas
- Taylor
Allderdice High School, Pittsburgh, Pennsylvania 15217, United States
| | - Geoffrey R. Hutchison
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - David Ryan Koes
- Department
of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Zhang XY, Li B, Huang BC, Wang FB, Zhang YQ, Zhao SG, Li M, Wang HY, Yu XJ, Liu XY, Jiang J, Wang ZP. Production, Biosynthesis, and Commercial Applications of Fatty Acids From Oleaginous Fungi. Front Nutr 2022; 9:873657. [PMID: 35694158 PMCID: PMC9176664 DOI: 10.3389/fnut.2022.873657] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Oleaginous fungi (including fungus-like protists) are attractive in lipid production due to their short growth cycle, large biomass and high yield of lipids. Some typical oleaginous fungi including Galactomyces geotrichum, Thraustochytrids, Mortierella isabellina, and Mucor circinelloides, have been well studied for the ability to accumulate fatty acids with commercial application. Here, we review recent progress toward fermentation, extraction, of fungal fatty acids. To reduce cost of the fatty acids, fatty acid productions from raw materials were also summarized. Then, the synthesis mechanism of fatty acids was introduced. We also review recent studies of the metabolic engineering strategies have been developed as efficient tools in oleaginous fungi to overcome the biochemical limit and to improve production efficiency of the special fatty acids. It also can be predictable that metabolic engineering can further enhance biosynthesis of fatty acids and change the storage mode of fatty acids.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bei-Chen Huang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Feng-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yue-Qi Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shao-Geng Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Min Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zhi-Peng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Screening of Antibiotic Gene Clusters in Microorganisms Isolated from Wood. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2296:151-165. [PMID: 33977446 DOI: 10.1007/978-1-0716-1358-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The biosphere of Earth is made up of a variety of ecosystems governed by complex biological interactions, some of them mediated by microbial bioactive secondary metabolites. These metabolites such as antibiotics (e.g., polyketides and nonribosomal peptides) have been receiving increasing attention, due to their multiple pharmaceutical uses. Besides, antibiotic resistance is on the rise, and it is currently regarded as one of the greatest threats to global human health. The screening of novel antimicrobial polyketides and nonribosomal peptides in poorly studied ecosystems is an interesting alternative to address the problem of antibiotic resistance. This chapter updates a molecular method to identify antibiotics gene clusters and their subsequent production and activity validation. On the one hand, a PCR method based on degenerated primers for nonribosomal peptide synthases (NRPS) and the polyketide synthases (PKS) genes is used as an initial fast screening. On the other hand, a bioassay-based method is the protocol selected for the production confirmation and antibacterial effect estimation. These methods are applied to screen Actinobacteria and Penicillium species as main antibiotic producers isolated from wood.
Collapse
|
5
|
Sulpizio A, Crawford CEW, Koweek RS, Charkoudian LK. Probing the structure and function of acyl carrier proteins to unlock the strategic redesign of type II polyketide biosynthetic pathways. J Biol Chem 2021; 296:100328. [PMID: 33493513 PMCID: PMC7949117 DOI: 10.1016/j.jbc.2021.100328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/04/2023] Open
Abstract
Type II polyketide synthases (PKSs) are protein assemblies, encoded by biosynthetic gene clusters in microorganisms, that manufacture structurally complex and pharmacologically relevant molecules. Acyl carrier proteins (ACPs) play a central role in biosynthesis by shuttling malonyl-based building blocks and polyketide intermediates to catalytic partners for chemical transformations. Because ACPs serve as central hubs in type II PKSs, they can also represent roadblocks to successfully engineering synthases capable of manufacturing 'unnatural natural products.' Therefore, understanding ACP conformational dynamics and protein interactions is essential to enable the strategic redesign of type II PKSs. However, the inherent flexibility and transience of ACP interactions pose challenges to gaining insight into ACP structure and function. In this review, we summarize how the application of chemical probes and molecular dynamic simulations has increased our understanding of the structure and function of type II PKS ACPs. We also share how integrating these advances in type II PKS ACP research with newfound access to key enzyme partners, such as the ketosynthase-chain length factor, sets the stage to unlock new biosynthetic potential.
Collapse
Affiliation(s)
- Ariana Sulpizio
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, USA
| | | | - Rebecca S Koweek
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, USA
| | | |
Collapse
|
6
|
Klein JG, Wu Y, Kokona B, Charkoudian LK. Widening the bottleneck: Heterologous expression, purification, and characterization of the Ktedonobacter racemifer minimal type II polyketide synthase in Escherichia coli. Bioorg Med Chem 2020; 28:115686. [PMID: 33069071 DOI: 10.1016/j.bmc.2020.115686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Enzyme assemblies such as type II polyketide synthases (PKSs) produce a wide array of bioactive secondary metabolites. While the molecules produced by type II PKSs have found remarkable clinical success, the biosynthetic prowess of these enzymes has been stymied by 1) the inability to reconstitute the bioactivity of the minimal PKS enzymes in vitro and 2) limited exploration of type II PKSs from diverse phyla. To begin filling this unmet need, we expressed, purified, and characterized the ketosynthase chain length factor (KS-CLF) and acyl carrier protein (ACP) from Ktedonobacter racemifer (Kr). Using E. coli as a heterologous host, we obtained soluble proteins in titers signifying improvements over previous KS-CLF heterologous expression efforts. Characterization of these enzymes reveals that KrACP has self-malonylating activity. Sedimentation velocity analytical ultracentrifugation (SV-AUC) analysis of holo-KrACP and KrKS-CLF indicates that these enzymes do not interact in vitro, suggesting that the acylated state of these proteins might play an important role in facilitating biosynthetically relevant interactions. These results lay important groundwork for optimizing the interaction between KrKS-CLF and KrACP and exploring the biosynthetic potential of other non-actinomycete type II PKSs.
Collapse
Affiliation(s)
- Joshua G Klein
- Haverford College, Department of Chemistry, Haverford, PA 19041, United States
| | - Yang Wu
- Haverford College, Department of Chemistry, Haverford, PA 19041, United States
| | - Bashkim Kokona
- Haverford College, Department of Chemistry, Haverford, PA 19041, United States.
| | | |
Collapse
|