1
|
Das D, Miller AF. A single hydrogen bond that tunes flavin redox reactivity and activates it for modification. Chem Sci 2024; 15:7610-7622. [PMID: 38784750 PMCID: PMC11110160 DOI: 10.1039/d4sc01642d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Electron bifurcation produces high-energy products based on less energetic reagents. This feat enables biological systems to exploit abundant mediocre fuel to drive vital but demanding reactions, including nitrogen fixation and CO2 capture. Thus, there is great interest in understanding principles that can be portable to man-made devices. Bifurcating electron transfer flavoproteins (Bf ETFs) employ two flavins with contrasting reactivities to acquire pairs of electrons from a modest reductant, NADH. The bifurcating flavin then dispatches the electrons individually to a high and a low reduction midpoint potential (E°) acceptor, the latter of which captures most of the energy. Maximum efficiency requires that only one electron accesses the exergonic path that will 'pay for' the production of the low-E° product. It is therefore critical that one of the flavins, the 'electron transfer' (ET) flavin, is tuned to execute single-electron (1e-) chemistry only. To learn how, and extract fundamental principles, we systematically altered interactions with the ET-flavin O2 position. Removal of a single hydrogen bond (H-bond) disfavored the formation of the flavin anionic semiquinone (ASQ) relative to the oxidized (OX) state, lowering by 150 mV and retuning the flavin's tendency for 1e-vs. 2e- reactivity. This was achieved by replacing conserved His 290 with Phe, while also replacing the supporting Tyr 279 with Ile. Although this variant binds oxidized FADs at 90% the WT level, the ASQ state of the ET-flavin is not stable in the absence of H290's H-bond, and dissociates, in contrast to the WT. Removal of this H-bond also altered the ET-flavin's covalent chemistry. While the WT ETF accumulates modified flavins whose formation is believed to rely on an anionic paraquinone methide intermediate, the FADs of the H-bond lacking variant remain unchanged over weeks. Hence the variant that destabilizes the anionic semiquinone also suppresses the anionic intermediate in flavin modification, verifying electronic similarities between these two species. These correlations suggest that the H-bond that stabilizes the crucial flavin ASQ also promotes flavin modification. The two effects may indeed be inseparable, as a Jekyll and Hydrogen bond.
Collapse
Affiliation(s)
- Debarati Das
- Department of Chemistry, University of Kentucky Lexington Kentucky USA
| | | |
Collapse
|
2
|
Unusual reactivity of a flavin in a bifurcating electron-transferring flavoprotein leads to flavin modification and a charge-transfer complex. J Biol Chem 2022; 298:102606. [PMID: 36257407 PMCID: PMC9713284 DOI: 10.1016/j.jbc.2022.102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
From the outset, canonical electron transferring flavoproteins (ETFs) earned a reputation for containing modified flavin. We now show that modification occurs in the recently recognized bifurcating (Bf) ETFs as well. In Bf ETFs, the 'electron transfer' (ET) flavin mediates single electron transfer via a stable anionic semiquinone state, akin to the FAD of canonical ETFs, whereas a second flavin mediates bifurcation (the Bf FAD). We demonstrate that the ET FAD undergoes transformation to two different modified flavins by a sequence of protein-catalyzed reactions that occurs specifically in the ET site, when the enzyme is maintained at pH 9 in an amine-based buffer. Our optical and mass spectrometric characterizations identify 8-formyl flavin early in the process and 8-amino flavins (8AFs) at later times. The latter have not previously been documented in an ETF to our knowledge. Mass spectrometry of flavin products formed in Tris or bis-tris-aminopropane solutions demonstrates that the source of the amine adduct is the buffer. Stepwise reduction of the 8AF demonstrates that it can explain a charge transfer band observed near 726 nm in Bf ETF, as a complex involving the hydroquinone state of the 8AF in the ET site with the oxidized state of unmodified flavin in the Bf site. This supports the possibility that Bf ETF can populate a conformation enabling direct electron transfer between its two flavins, as has been proposed for cofactors brought together in complexes between ETF and its partner proteins.
Collapse
|
3
|
An uncharacteristically low-potential flavin governs the energy landscape of electron bifurcation. Proc Natl Acad Sci U S A 2022; 119:e2117882119. [PMID: 35290111 PMCID: PMC8944662 DOI: 10.1073/pnas.2117882119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Nature has long been an inspiration for materials design, as it exemplifies exquisite control of both matter and energy. Electron bifurcation, a mechanism employed in biological systems to drive thermodynamically unfavorable and energetically challenging chemical reactions, is one such example. A key feature of bifurcating enzymes is the ability of a single redox cofactor to distribute a pair of electrons across two spatially separated electron transfer pathways. Here, we report on the empirical determination of both the one-electron potential and two-electron potential of the bifurcating flavin cofactor in the NADH-dependent ferredoxin-NADP+ oxidoreductase I (NfnSL) enzyme. Insights arising from the defined energy landscape of this bifurcation site may underlie the design of synthetic catalysts capable of generating high-energy intermediates. Electron bifurcation, an energy-conserving process utilized extensively throughout all domains of life, represents an elegant means of generating high-energy products from substrates with less reducing potential. The coordinated coupling of exergonic and endergonic reactions has been shown to operate over an electrochemical potential of ∼1.3 V through the activity of a unique flavin cofactor in the enzyme NADH-dependent ferredoxin-NADP+ oxidoreductase I. The inferred energy landscape has features unprecedented in biochemistry and presents novel energetic challenges, the most intriguing being a large thermodynamically uphill step for the first electron transfer of the bifurcation reaction. However, ambiguities in the energy landscape at the bifurcating site deriving from overlapping flavin spectral signatures have impeded a comprehensive understanding of the specific mechanistic contributions afforded by thermodynamic and kinetic factors. Here, we elucidate an uncharacteristically low two-electron potential of the bifurcating flavin, resolving the energetic challenge of the first bifurcation event.
Collapse
|
4
|
Mohamed-Raseek N, Miller AF. Contrasting roles for two conserved arginines: stabilizing flavin semiquinone or quaternary structure, in bifurcating electron transfer flavoproteins. J Biol Chem 2022; 298:101733. [PMID: 35176283 PMCID: PMC8958531 DOI: 10.1016/j.jbc.2022.101733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 01/02/2023] Open
Abstract
Bifurcating electron transfer flavoproteins (Bf ETFs) are important redox enzymes that contain two flavin adenine dinucleotide (FAD) cofactors, with contrasting reactivities and complementary roles in electron bifurcation. However, for both the “electron transfer” (ET) and the “bifurcating” (Bf) FADs, the only charged amino acid within 5 Å of the flavin is a conserved arginine (Arg) residue. To understand how the two sites produce different reactivities utilizing the same residue, we investigated the consequences of replacing each of the Arg residues with lysine, glutamine, histidine, or alanine. We show that absence of a positive charge in the ET site diminishes accumulation of the anionic semiquinone (ASQ) that enables the ET flavin to act as a single electron carrier, due to depression of the oxidized versus. ASQ reduction midpoint potential, E°OX/ASQ. Perturbation of the ET site also affected the remote Bf site, whereas abrogation of Bf FAD binding accelerated chemical modification of the ET flavin. In the Bf site, removal of the positive charge impaired binding of FAD or AMP, resulting in unstable protein. Based on pH dependence, we propose that the Bf site Arg interacts with the phosphate(s) of Bf FAD or AMP, bridging the domain interface via a conserved peptide loop (“zipper”) and favoring nucleotide binding. We further propose a model that rationalizes conservation of the Bf site Arg even in non-Bf ETFs, as well as AMP's stabilizing role in the latter, and provides a mechanism for coupling Bf flavin redox changes to domain-scale motion.
Collapse
|
5
|
Song Z, Wei C, Li C, Gao X, Mao S, Lu F, Qin HM. Customized exogenous ferredoxin functions as an efficient electron carrier. BIORESOUR BIOPROCESS 2021; 8:109. [PMID: 38650207 PMCID: PMC10992505 DOI: 10.1186/s40643-021-00464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
Ferredoxin (Fdx) is regarded as the main electron carrier in biological electron transfer and acts as an electron donor in metabolic pathways of many organisms. Here, we screened a self-sufficient P450-derived reductase PRF with promising production yield of 9OHAD (9α-hydroxy4-androstene-3,17-dione) from AD, and further proved the importance of [2Fe-2S] clusters of ferredoxin-oxidoreductase in transferring electrons in steroidal conversion. The results of truncated Fdx domain in all oxidoreductases and mutagenesis data elucidated the indispensable role of [2Fe-2S] clusters in the electron transfer process. By adding the independent plant-type Fdx to the reaction system, the AD (4-androstene-3,17-dione) conversion rate have been significantly improved. A novel efficient electron transfer pathway of PRF + Fdx + KshA (KshA, Rieske-type oxygenase of 3-ketosteroid-9-hydroxylase) in the reaction system rather than KshAB complex system was proposed based on analysis of protein-protein interactions and redox potential measurement. Adding free Fdx created a new conduit for electrons to travel from reductase to oxygenase. This electron transfer pathway provides new insight for the development of efficient exogenous Fdx as an electron carrier.
Collapse
Affiliation(s)
- Zhan Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Cancan Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xin Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
6
|
Varner TA, Mohamed-Raseek N, Miller AF. Assignments of 19F NMR resonances and exploration of dynamics in a long-chain flavodoxin. Arch Biochem Biophys 2021; 703:108839. [PMID: 33727041 DOI: 10.1016/j.abb.2021.108839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
Flavodoxin is a small protein that employs a non-covalently bound flavin to mediate single-electron transfer at low potentials. The long-chain flavodoxins possess a long surface loop that is proposed to interact with partner proteins. We have incorporated 19F-labeled tyrosine in long-chain flavodoxin from Rhodopseudomonas palustris to gain a probe of possible loop dynamics, exploiting the presence of a Tyr in the long loop in addition to Tyr residues near the flavin. We report 19F resonance assignments for all four Tyrs, and demonstration of a pair of resonances in slow exchange, both corresponding to a Tyr adjacent to the flavin. We also provide evidence for dynamics affecting the Tyr in the long loop. Thus, we show that 19F NMR of 19F-Tyr labeled flavodoxin holds promise for monitoring possible changes in conformation upon binding to partner proteins.
Collapse
Affiliation(s)
- Taylor A Varner
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | | | | |
Collapse
|