1
|
Bauer M, Vetter M, Stückrath K, Yohannes M, Desalegn Z, Yalew T, Bekuretsion Y, Kenea TW, Joffe M, van den Berg EJ, Nikulu JI, Bakarou K, Manraj SS, Ogunbiyi OJ, Ekanem IO, Igbinoba F, Diomande M, Adebamowo C, Dzamalala CP, Anele AA, Zietsman A, Galukande M, Foerster M, dos-Santos-Silva I, Liu B, Santos P, Jemal A, Abebe T, Wickenhauser C, Seliger B, McCormack V, Kantelhardt EJ. Regional Variation in the Tumor Microenvironment, Immune Escape and Prognostic Factors in Breast Cancer in Sub-Saharan Africa. Cancer Immunol Res 2023; 11:720-731. [PMID: 37058582 PMCID: PMC10552870 DOI: 10.1158/2326-6066.cir-22-0795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/18/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
The low overall survival rates of patients with breast cancer in sub-Saharan Africa (SSA) are driven by regionally differing tumor biology, advanced tumor stages at diagnosis, and limited access to therapy. However, it is not known whether regional differences in the composition of the tumor microenvironment (TME) exist and affect patients' prognosis. In this international, multicentre cohort study, 1,237 formalin-fixed, paraffin-embedded breast cancer samples, including samples of the "African Breast Cancer-Disparities in Outcomes (ABC-DO) Study," were analyzed. The immune cell phenotypes, their spatial distribution in the TME, and immune escape mechanisms of breast cancer samples from SSA and Germany (n = 117) were investigated using histomorphology, conventional and multiplex IHC, and RNA expression analysis. The data revealed no regional differences in the number of tumor-infiltrating lymphocytes (TIL) in the 1,237 SSA breast cancer samples, while the distribution of TILs in different breast cancer IHC subtypes showed regional diversity, particularly when compared with German samples. Higher TIL densities were associated with better survival in the SSA cohort (n = 400), but regional differences concerning the predictive value of TILs existed. High numbers of CD163+ macrophages and CD3+CD8+ T cells accompanied by reduced cytotoxicity, altered IL10 and IFNγ levels and downregulation of MHC class I components were predominantly detected in breast cancer samples from Western SSA. Features of nonimmunogenic breast cancer phenotypes were associated with reduced patient survival (n = 131). We therefore conclude that regional diversity in the distribution of breast cancer subtypes, TME composition, and immune escape mechanisms should be considered for therapy decisions in SSA and the design of personalized therapies. See related Spotlight by Bergin et al., p. 705.
Collapse
Affiliation(s)
- Marcus Bauer
- Department of Pathology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Global Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Martina Vetter
- Department of Gynecology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kathrin Stückrath
- Department of Gynecology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Meron Yohannes
- Department of Medical Laboratory Science, College of Health sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Zelalem Desalegn
- Department of Microbiology, Immunology & Parasitology, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tewodros Yalew
- Department of Pathology, Tikur Anbessa Specialized University Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yonas Bekuretsion
- Department of Pathology, Tikur Anbessa Specialized University Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tariku W. Kenea
- Department of Surgery, Aira General Hospital, Aira, Ethiopia
| | - Maureen Joffe
- Noncommunicable Diseases Research Division, Wits Health Consortium (PTY) Ltd, Johannesburg, South Africa and U Witwatersrand, Faculty of Health Sciences, Strengthening Oncology Services Research Unit
- SAMRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eunice J van den Berg
- Department of Anatomical Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Julien I. Nikulu
- Ligue congolaise contre le cancer, l’Unité Pilote du GFAOP, Lubumbashi, Democratic Republic of the Congo
| | - Kamate Bakarou
- Service d’anatomie, Cytologie Pathologique au C.H.U. du point G BP:333, Bamako, Mali
| | - Shyam S. Manraj
- Central Health Laboratory, Victoria Hospital, Candos, Mauritius
| | - Olufemi J. Ogunbiyi
- Department of Pathology, University College Hospital, Ibadan, Oyo state, Nigeria
| | - Ima-Obong Ekanem
- Department of Pathology, Calabar Cancer Registry, University of Calabar Teaching Hospital, Calabar, Nigeria
| | | | - Mohenou Diomande
- Service d’anatomie et cytologie pathologiques, Abidjan, Côte d’Ivoire
| | - Clement Adebamowo
- Department of Epidemiology and Public Health, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore
| | | | | | - Annelle Zietsman
- AB May Cancer Centre, Windhoek Central Hospital, Windhoek, Namibia
| | - Moses Galukande
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Milena Foerster
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Isabel dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine (LSHTM)
| | - Biying Liu
- African Cancer Registry Network, Oxford, United Kingdom
| | - Pablo Santos
- Global Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ahmedin Jemal
- Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia, USA
| | - Tamrat Abebe
- Department of Medical Laboratory Science, College of Health sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Claudia Wickenhauser
- Department of Pathology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Translational Immunology, Medical School ‘Theodor Fontane, Brandenburg an der Havel, Germany
- Fraunhofer Institute for Immunology, Leipzig, Germany
| | - Valerie McCormack
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Eva J. Kantelhardt
- Global Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Department of Gynecology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
2
|
Beneyto-Calabuig S, Merbach AK, Kniffka JA, Antes M, Szu-Tu C, Rohde C, Waclawiczek A, Stelmach P, Gräßle S, Pervan P, Janssen M, Landry JJM, Benes V, Jauch A, Brough M, Bauer M, Besenbeck B, Felden J, Bäumer S, Hundemer M, Sauer T, Pabst C, Wickenhauser C, Angenendt L, Schliemann C, Trumpp A, Haas S, Scherer M, Raffel S, Müller-Tidow C, Velten L. Clonally resolved single-cell multi-omics identifies routes of cellular differentiation in acute myeloid leukemia. Cell Stem Cell 2023; 30:706-721.e8. [PMID: 37098346 DOI: 10.1016/j.stem.2023.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/05/2023] [Accepted: 03/30/2023] [Indexed: 04/27/2023]
Abstract
Inter-patient variability and the similarity of healthy and leukemic stem cells (LSCs) have impeded the characterization of LSCs in acute myeloid leukemia (AML) and their differentiation landscape. Here, we introduce CloneTracer, a novel method that adds clonal resolution to single-cell RNA-seq datasets. Applied to samples from 19 AML patients, CloneTracer revealed routes of leukemic differentiation. Although residual healthy and preleukemic cells dominated the dormant stem cell compartment, active LSCs resembled their healthy counterpart and retained erythroid capacity. By contrast, downstream myeloid progenitors constituted a highly aberrant, disease-defining compartment: their gene expression and differentiation state affected both the chemotherapy response and leukemia's ability to differentiate into transcriptomically normal monocytes. Finally, we demonstrated the potential of CloneTracer to identify surface markers misregulated specifically in leukemic cells. Taken together, CloneTracer reveals a differentiation landscape that mimics its healthy counterpart and may determine biology and therapy response in AML.
Collapse
Affiliation(s)
- Sergi Beneyto-Calabuig
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Anne Kathrin Merbach
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, 69117 Heidelberg, Germany
| | - Jonas-Alexander Kniffka
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Magdalena Antes
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Chelsea Szu-Tu
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Christian Rohde
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, 69117 Heidelberg, Germany
| | - Alexander Waclawiczek
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Patrick Stelmach
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Sarah Gräßle
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Philip Pervan
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Maike Janssen
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, 69117 Heidelberg, Germany
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michaela Brough
- Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Marcus Bauer
- Institute of Pathology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany
| | - Birgit Besenbeck
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Julia Felden
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sebastian Bäumer
- Department of Medicine A, Hematology and Oncology, University Hospital, Muenster, Germany
| | - Michael Hundemer
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tim Sauer
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Caroline Pabst
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, 69117 Heidelberg, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany
| | - Linus Angenendt
- Department of Medicine A, Hematology and Oncology, University Hospital, Muenster, Germany; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Christoph Schliemann
- Department of Medicine A, Hematology and Oncology, University Hospital, Muenster, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Michael Scherer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Simon Raffel
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, 69117 Heidelberg, Germany.
| | - Lars Velten
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
3
|
Vaxevanis CK, Bauer M, Subbarayan K, Friedrich M, Massa C, Biehl K, Al-Ali HK, Wickenhauser C, Seliger B. Biglycan as a mediator of proinflammatory response and target for MDS and sAML therapy. Oncoimmunology 2022; 12:2152998. [PMID: 36531688 PMCID: PMC9757483 DOI: 10.1080/2162402x.2022.2152998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Myelodysplastic syndromes (MDS) and their progression to secondary acute myeloid leukemia (sAML) are associated with an altered protein expression including extracellular matrix (ECM) components thereby promoting an inflammatory environment. Since the role of the proteoglycan biglycan (BGN) as an inflammatory mediator has not yet been investigated in both diseases and might play a role in disease progression, its expression and/or function was determined in cell lines and bone marrow biopsies (BMBs) of MDS and sAML patients and subpopulations of MDS stem cells by Western blot and immunohistochemistry. The bone marrow (BM) microenvironment was analyzed by multispectral imaging, patients' survival by Cox regression. ROC curves were assessed for diagnostic value of BGN. All cell lines showed a strong BGN surface expression in contrast to only marginal expression levels in mononuclear cells and CD34+ cells from healthy donors. In the MDS-L cell line, CD34-CD33+ and CD34+CD33+ blast subpopulations exhibited a differential BGN surface detection. Increased BGN mediated inflammasome activity of CD34-CD33+TLR4+ cells was observed, which was inhibited by direct targeting of BGN or NLRP3. BGN was heterogeneously expressed in BMBs of MDS and sAML, but was not detected in control biopsies. BGN expression in BMBs positively correlated with MUM1+ and CD8+, but negatively with CD33+TLR4+ cell infiltration and was accompanied by a decreased progression-free survival of MDS patients. BGN-mediated inflammasome activation appears to be a crucial mechanism in MDS pathogenesis implicating its use as suitable biomarker and potential therapeutic target. Abbreviations: Ab, antibody; alloSCT, allogenic stem cell transplant; AML, acute myeloid leukemia; BGN, biglycan; BM, bone marrow; BMB, bone marrow biopsy; casp1, caspase 1; CTLA-4, cytotoxic T lymphocyte-associated protein 4; DAMP, danger-associated molecular pattern; ECM, extracellular matrix; FCS, fetal calf serum; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HD, healthy donor; HSPC, hematopoietic stem and progenitor cell; HSC, hematopoietic stem cell; IFN, interferon; IHC, immunohistochemistry; IL, interleukin; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; MSI, multispectral imaging; NGS, next-generation sequencing; NLRP3, NLR family pyrin domain containing 3; OS, overall survival; PBMC, peripheral blood mononuclear cell; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1, PFS, progression-free survival; PRR, pattern recognition receptor; SC, stem cell; SLRP, small leucine-rich proteoglycan; TGF, transforming growth factor; TIRAP, toll/interleukin 1 receptor domain-containing adapter protein; TLR, toll-like receptor; Treg, regulatory T cell.
Collapse
Affiliation(s)
| | - Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale)06112, Germany
| | | | - Michael Friedrich
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale)06112, Germany
| | - Chiara Massa
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale)06112, Germany
| | - Katharina Biehl
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale)06112, Germany
| | - Haifa Kathrin Al-Ali
- Krukenberg Cancer Center Halle, University Hospital Halle, Krukenberg-Krebszentrum, Halle (Saale)06120, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale)06112, Germany
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale)06112, Germany,Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig04103, Germany,Medical School Theodor Fontane, Institute of Translational Medicine, Brandenburg an der Havel14770, Germany,CONTACT Barbara Seliger Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), 06112, Germany
| |
Collapse
|
4
|
Sun Y, Helmholz H, Willumeit-Römer R. Multicolor Histochemical Staining for Identification of Mineralized and Non-Mineralized Musculoskeletal Tissue: Immunohistochemical and Radiological Validation in Decalcified Bone Samples. Bioengineering (Basel) 2022; 9:bioengineering9100488. [PMID: 36290456 PMCID: PMC9598171 DOI: 10.3390/bioengineering9100488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Histochemical staining of paraffin-embedded decalcified bone samples is commonly used in preclinical research of musculoskeletal diseases, enabling the visualization of multiple tissue components by the application of chromogens. The purpose of this study was to introduce a novel multicolor staining protocol involving optimized chemical reagents and procedure, allowing the identification of high-mineralized bone, low-mineralized fracture callus, cartilage and skeletal muscle fibers simultaneously. Fractured femur and healthy tail vertebra samples from adult male Sprague–Dawley rats were decalcified with EDTA and formic acid, respectively, followed by paraffin embedding, tissue sectioning and multicolor staining. Conventional Movat’s pentachrome and safranin O / fast green staining were conducted in parallel for comparison. Immunohistochemical staining of collagen type-X and micro-CT analysis were included to further validate the efficacy of the staining method. The multicolor staining allowed visualization of major musculoskeletal tissue components in both types of decalcified samples, providing quality outcomes with fewer chemical reagents and simplified procedures. Immunohistochemical staining demonstrated its capacity for identification of the endochondral ossification process during fracture healing. Micro-CT imaging validated the staining outcome for high-mineralized skeletal tissue. The application of the multicolor staining may facilitate future preclinical research involving decalcified paraffin-embedded samples.
Collapse
Affiliation(s)
- Yu Sun
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang 110001, China
- Correspondence:
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | | |
Collapse
|
5
|
Bauer M, Vaxevanis C, Al-Ali HK, Jaekel N, Naumann CLH, Schaffrath J, Rau A, Seliger B, Wickenhauser C. Altered Spatial Composition of the Immune Cell Repertoire in Association to CD34 + Blasts in Myelodysplastic Syndromes and Secondary Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13020186. [PMID: 33430322 PMCID: PMC7825771 DOI: 10.3390/cancers13020186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Despite a relationship between immune dysregulation and the course of myelodysplastic syndromes (MDS) has been discussed, a detailed understanding of this phenomenon is still missing. Therefore, multiplex analyses of bone marrow biopsies (BMB) from patients with MDS and secondary acute myeloid leukemia (sAML) were performed in order to determine the repertoire of lymphocyte subpopulations and their distance to CD34+ blasts. In MDS and sAML samples, the composition, quantity, and spatial proximity of immune cell subsets to CD34+ blasts were heterogeneous and correlated to the blast counts, but not to the genetics of the diseases, while in non-neoplastic BMB no CD8+ and FOXP3+ T cells and only single MUM1p+ B/plasma cells were detected in a distance of ≤10 μm to CD34+ hematopoietic progenitor cells (HPSC). We conclude that CD8+ and FOXP3+ T cells are not part of the immediate surrounding of CD34+ HPSC. Abstract Background: Myelodysplastic syndromes (MDS) are caused by a stem cell failure and often include a dysfunction of the immune system. However, the relationship between spatial immune cell distribution within the bone marrow (BM), in relation to genetic features and the course of disease has not been analyzed in detail. Methods: Histotopography of immune cell subpopulations and their spatial distribution to CD34+ hematopoietic cells was determined by multispectral imaging (MSI) in 147 BM biopsies (BMB) from patients with MDS, secondary acute myeloid leukemia (sAML), and controls. Results: In MDS and sAML samples, a high inter-tumoral immune cell heterogeneity in spatial proximity to CD34+ blasts was found that was independent of genetic alterations, but correlated to blast counts. In controls, no CD8+ and FOXP3+ T cells and only single MUM1p+ B/plasma cells were detected in an area of ≤10 μm to CD34+ HSPC. Conclusions: CD8+ and FOXP3+ T cells are regularly seen in the 10 μm area around CD34+ blasts in MDS/sAML regardless of the course of the disease but lack in the surrounding of CD34+ HSPC in control samples. In addition, the frequencies of immune cell subsets in MDS and sAML BMB differ when compared to control BMB providing novel insights in immune deregulation.
Collapse
Affiliation(s)
- Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 14, 06112 Halle, Germany;
| | - Christoforos Vaxevanis
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (C.V.); (B.S.)
| | - Haifa Kathrin Al-Ali
- Department of Hematology/Oncology, University Hospital Halle, 06112 Halle, Germany; (H.K.A.-A.); (N.J.); (C.L.H.N.); (J.S.)
- Krukenberg Cancer Center, University Hospital Halle, 06112 Halle, Germany
| | - Nadja Jaekel
- Department of Hematology/Oncology, University Hospital Halle, 06112 Halle, Germany; (H.K.A.-A.); (N.J.); (C.L.H.N.); (J.S.)
| | - Christin Le Hoa Naumann
- Department of Hematology/Oncology, University Hospital Halle, 06112 Halle, Germany; (H.K.A.-A.); (N.J.); (C.L.H.N.); (J.S.)
| | - Judith Schaffrath
- Department of Hematology/Oncology, University Hospital Halle, 06112 Halle, Germany; (H.K.A.-A.); (N.J.); (C.L.H.N.); (J.S.)
| | - Achim Rau
- Institute of Pathology and Neuropathology, University of Tübingen, 72016 Tübingen, Germany;
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (C.V.); (B.S.)
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 14, 06112 Halle, Germany;
- Correspondence: ; Tel.: +49-(345)-557-1281; Fax: +49-(345)-557-1295
| |
Collapse
|