1
|
Hashmi MATS, Fatima H, Ahmad S, Rehman A, Safdar F. The interplay between epitranscriptomic RNA modifications and neurodegenerative disorders: Mechanistic insights and potential therapeutic strategies. IBRAIN 2024; 10:395-426. [PMID: 39691424 PMCID: PMC11649393 DOI: 10.1002/ibra.12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 12/19/2024]
Abstract
Neurodegenerative disorders encompass a group of age-related conditions characterized by the gradual decline in both the structure and functionality of the central nervous system (CNS). RNA modifications, arising from the epitranscriptome or RNA-modifying protein mutations, have recently been observed to contribute significantly to neurodegenerative disorders. Specific modifications like N6-methyladenine (m6A), N1-methyladenine (m1A), 5-methylcytosine (m5C), pseudouridine and adenosine-to-inosine (A-to-I) play key roles, with their regulators serving as crucial therapeutic targets. These epitranscriptomic changes intricately control gene expression, influencing cellular functions and contributing to disease pathology. Dysregulation of RNA metabolism, affecting mRNA processing and noncoding RNA biogenesis, is a central factor in these diseases. This review underscores the complex relationship between RNA modifications and neurodegenerative disorders, emphasizing the influence of RNA modification and the epitranscriptome, exploring the function of RNA modification enzymes in neurodegenerative processes, investigating the functional consequences of RNA modifications within neurodegenerative pathways, and evaluating the potential therapeutic advancements derived from assessing the epitranscriptome.
Collapse
Affiliation(s)
| | | | - Sadia Ahmad
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Amna Rehman
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Fiza Safdar
- Department of BiochemistryUniversity of NarowalNarowalPakistan
| |
Collapse
|
2
|
Prodan-Bărbulescu C, Ghenciu LA, Şeclăman E, Bujor GC, Enătescu V, Danila AI, Dăescu E, Rosu LM, Faur IF, Tuţac P, Varga NI, Sonia T, Duță C. Exploring miRNA Biomarkers in Major Depressive Disorder: A Molecular Medicine Perspective. Curr Issues Mol Biol 2024; 46:10846-10853. [PMID: 39451524 PMCID: PMC11506240 DOI: 10.3390/cimb46100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Major depressive disorder (MDD) is a complex mental health condition with a multifaceted and incompletely elucidated pathophysiology. MicroRNAs (miRNAs) have emerged as potential biomarkers due to their role in gene regulation and the observed dysregulation in MDD. The aim of this study is to detect the presence of specific molecular diagnostic biomarkers in major depressive disorder. This cross-sectional study analyzed plasma miRNA expression in ten MDD patients and eight healthy controls using real-time PCR. Differentially expressed miRNAs were identified using independent t-tests, and their diagnostic potential was assessed with ROC curve analysis. Fifteen miRNAs exhibited significant dysregulation in MDD patients. Notably, hsa-miR-29c-3p, hsa-miR-376a-3p, hsa-miR-532-5p, and hsa-miR-339-5p showed excellent discriminatory power (AUC > 0.8). This study identifies differentially expressed plasma miRNAs in MDD, suggesting their potential for improved diagnosis and personalized treatment. However, further validation in larger cohorts and investigation into their functional roles are warranted.
Collapse
Affiliation(s)
- Cătălin Prodan-Bărbulescu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.P.-B.); (V.E.); (C.D.)
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timișoara, Romania; (A.-I.D.); (E.D.); (L.M.R.)
| | - Laura Andreea Ghenciu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.P.-B.); (V.E.); (C.D.)
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timișoara, Romania; (A.-I.D.); (E.D.); (L.M.R.)
- Department III—Discipline of Physiopathology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timișoara, Romania
| | - Edward Şeclăman
- Department IV—Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timișoara, 2nd Eftimie Murgu Square, 300041 Timișoara, Romania; (E.Ş.); (G.C.B.)
| | - Georgeta Cristiana Bujor
- Department IV—Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timișoara, 2nd Eftimie Murgu Square, 300041 Timișoara, Romania; (E.Ş.); (G.C.B.)
| | - Virgil Enătescu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.P.-B.); (V.E.); (C.D.)
- Discipline of Psychiatry, Department of Neurosciences, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 300041 Timișoara, Romania
| | - Alexandra-Ioana Danila
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timișoara, Romania; (A.-I.D.); (E.D.); (L.M.R.)
| | - Ecaterina Dăescu
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timișoara, Romania; (A.-I.D.); (E.D.); (L.M.R.)
| | - Luminioara Maria Rosu
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timișoara, Romania; (A.-I.D.); (E.D.); (L.M.R.)
| | - Ionuţ Flaviu Faur
- IInd Surgery Clinic, Timisoara Emergency County Hospital, 300723 Timișoara, Romania;
- Department of General Surgery, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Paul Tuţac
- Doctoral School, Department of General Medicine, University of Medicine and Pharmacy Victor Babeş Timisoara, 300041 Timișoara, Romania; (P.T.); (N.-I.V.)
| | - Norberth-Istvan Varga
- Doctoral School, Department of General Medicine, University of Medicine and Pharmacy Victor Babeş Timisoara, 300041 Timișoara, Romania; (P.T.); (N.-I.V.)
| | - Tanasescu Sonia
- Department of Pediatrics, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania;
| | - Ciprian Duță
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.P.-B.); (V.E.); (C.D.)
- IInd Surgery Clinic, Timisoara Emergency County Hospital, 300723 Timișoara, Romania;
| |
Collapse
|
3
|
Wang X, Gan M, Wang Y, Wang S, Lei Y, Wang K, Zhang X, Chen L, Zhao Y, Niu L, Zhang S, Zhu L, Shen L. Comprehensive review on lipid metabolism and RNA methylation: Biological mechanisms, perspectives and challenges. Int J Biol Macromol 2024; 270:132057. [PMID: 38710243 DOI: 10.1016/j.ijbiomac.2024.132057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Adipose tissue plays a crucial role in maintaining energy balance, regulating hormones, and promoting metabolic health. To address disorders related to obesity and develop effective therapies, it is essential to have a deep understanding of adipose tissue biology. In recent years, RNA methylation has emerged as a significant epigenetic modification involved in various cellular functions and metabolic pathways. Particularly in the realm of adipogenesis and lipid metabolism, extensive research is ongoing to uncover the mechanisms and functional importance of RNA methylation. Increasing evidence suggests that RNA methylation plays a regulatory role in adipocyte development, metabolism, and lipid utilization across different organs. This comprehensive review aims to provide an overview of common RNA methylation modifications, their occurrences, and regulatory mechanisms, focusing specifically on their intricate connections to fat metabolism. Additionally, we discuss the research methodologies used in studying RNA methylation and highlight relevant databases that can aid researchers in this rapidly advancing field.
Collapse
Affiliation(s)
- Xingyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Saihao Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Kai Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Saw PE, Song E. Advancements in clinical RNA therapeutics: Present developments and prospective outlooks. Cell Rep Med 2024; 5:101555. [PMID: 38744276 PMCID: PMC11148805 DOI: 10.1016/j.xcrm.2024.101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
RNA molecules have emerged as promising clinical therapeutics due to their ability to target "undruggable" proteins or molecules with high precision and minimal side effects. Nevertheless, the primary challenge in RNA therapeutics lies in rapid degradation and clearance from systemic circulation, the inability to traverse cell membranes, and the efficient intracellular delivery of bioactive RNA molecules. In this review, we explore the implications of RNAs in diseases and provide a chronological overview of the development of RNA therapeutics. Additionally, we summarize the technological advances in RNA-screening design, encompassing various RNA databases and design platforms. The paper then presents an update on FDA-approved RNA therapeutics and those currently undergoing clinical trials for various diseases, with a specific emphasis on RNA medicine and RNA vaccines.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan 528200, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
5
|
Singh S, Sarma DK, Verma V, Nagpal R, Kumar M. Unveiling the future of metabolic medicine: omics technologies driving personalized solutions for precision treatment of metabolic disorders. Biochem Biophys Res Commun 2023; 682:1-20. [PMID: 37788525 DOI: 10.1016/j.bbrc.2023.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Metabolic disorders are increasingly prevalent worldwide, leading to high rates of morbidity and mortality. The variety of metabolic illnesses can be addressed through personalized medicine. The goal of personalized medicine is to give doctors the ability to anticipate the best course of treatment for patients with metabolic problems. By analyzing a patient's metabolomic, proteomic, genetic profile, and clinical data, physicians can identify relevant diagnostic, and predictive biomarkers and develop treatment plans and therapy for acute and chronic metabolic diseases. To achieve this goal, real-time modeling of clinical data and multiple omics is essential to pinpoint underlying biological mechanisms, risk factors, and possibly useful data to promote early diagnosis and prevention of complex diseases. Incorporating cutting-edge technologies like artificial intelligence and machine learning is crucial for consolidating diverse forms of data, examining multiple variables, establishing databases of clinical indicators to aid decision-making, and formulating ethical protocols to address concerns. This review article aims to explore the potential of personalized medicine utilizing omics approaches for the treatment of metabolic disorders. It focuses on the recent advancements in genomics, epigenomics, proteomics, metabolomics, and nutrigenomics, emphasizing their role in revolutionizing personalized medicine.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India.
| |
Collapse
|
6
|
Cozzuto L, Delgado-Tejedor A, Hermoso Pulido T, Novoa EM, Ponomarenko J. Nanopore Direct RNA Sequencing Data Processing and Analysis Using MasterOfPores. Methods Mol Biol 2023; 2624:185-205. [PMID: 36723817 DOI: 10.1007/978-1-0716-2962-8_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This chapter describes MasterOfPores v.2 (MoP2), an open-source suite of pipelines for processing and analyzing direct RNA Oxford Nanopore sequencing data. The MoP2 relies on the Nextflow DSL2 framework and Linux containers, thus enabling reproducible data analysis in transcriptomic and epitranscriptomic studies. We introduce the key concepts of MoP2 and provide a step-by-step fully reproducible and complete example of how to use the workflow for the analysis of S. cerevisiae total RNA samples sequenced using MinION flowcells. The workflow starts with the pre-processing of raw FAST5 files, which includes basecalling, read quality control, demultiplexing, filtering, mapping, estimation of per-gene/transcript abundances, and transcriptome assembly, with support of the GPU computing for the basecalling and read demultiplexing steps. The secondary analyses of the workflow focus on the estimation of RNA poly(A) tail lengths and the identification of RNA modifications. The MoP2 code is available at https://github.com/biocorecrg/MOP2 and is distributed under the MIT license.
Collapse
Affiliation(s)
- Luca Cozzuto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Delgado-Tejedor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Toni Hermoso Pulido
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
7
|
Song Y, Jiang Y, Shi L, He C, Zhang W, Xu Z, Yang M, Xu Y. Comprehensive analysis of key m5C modification-related genes in type 2 diabetes. Front Genet 2022; 13:1015879. [PMID: 36276976 PMCID: PMC9582283 DOI: 10.3389/fgene.2022.1015879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background: 5-methylcytosine (m5C) RNA methylation plays a significant role in several human diseases. However, the functional role of m5C in type 2 diabetes (T2D) remains unclear.Methods: The merged gene expression profiles from two Gene Expression Omnibus (GEO) datasets were used to identify m5C-related genes and T2D-related differentially expressed genes (DEGs). Least-absolute shrinkage and selection operator (LASSO) regression analysis was performed to identify optimal predictors of T2D. After LASSO regression, we constructed a diagnostic model and validated its accuracy. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to confirm the biological functions of DEGs. Gene Set Enrichment Analysis (GSEA) was used to determine the functional enrichment of molecular subtypes. Weighted gene co-expression network analysis (WGCNA) was used to select the module that correlated with the most pyroptosis-related genes. Protein-protein interaction (PPI) network was established using the STRING database, and hub genes were identified using Cytoscape software. The competitive endogenous RNA (ceRNA) interaction network of the hub genes was obtained. The CIBERSORT algorithm was applied to analyze the interactions between hub gene expression and immune infiltration.Results: m5C-related genes were significantly differentially expressed in T2D and correlated with most T2D-related DEGs. LASSO regression showed that ZBTB4 could be a predictive gene for T2D. GO, KEGG, and GSEA indicated that the enriched modules and pathways were closely related to metabolism-related biological processes and cell death. The top five genes were identified as hub genes in the PPI network. In addition, a ceRNA interaction network of hub genes was obtained. Moreover, the expression levels of the hub genes were significantly correlated with the abundance of various immune cells.Conclusion: Our findings may provide insights into the molecular mechanisms underlying T2D based on its pathophysiology and suggest potential biomarkers and therapeutic targets for T2D.
Collapse
Affiliation(s)
- Yaxian Song
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Jiang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Shi
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen He
- Department of Geriatric Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenhua Zhang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Xu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mengshi Yang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yushan Xu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yushan Xu,
| |
Collapse
|
8
|
Geng X, Li Z, Yang Y. Emerging Role of Epitranscriptomics in Diabetes Mellitus and Its Complications. Front Endocrinol (Lausanne) 2022; 13:907060. [PMID: 35692393 PMCID: PMC9184717 DOI: 10.3389/fendo.2022.907060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetes mellitus (DM) and its related complications are among the leading causes of disability and mortality worldwide. Substantial studies have explored epigenetic regulation that is involved in the modifications of DNA and proteins, but RNA modifications in diabetes are still poorly investigated. In recent years, posttranscriptional epigenetic modification of RNA (the so-called 'epitranscriptome') has emerged as an interesting field of research. Numerous modifications, mainly N6 -methyladenosine (m6A), have been identified in nearly all types of RNAs and have been demonstrated to have an indispensable effect in a variety of human diseases, such as cancer, obesity, and diabetes. Therefore, it is particularly important to understand the molecular basis of RNA modifications, which might provide a new perspective for the pathogenesis of diabetes mellitus and the discovery of new therapeutic targets. In this review, we aim to summarize the recent progress in the epitranscriptomics involved in diabetes and diabetes-related complications. We hope to provide some insights for enriching the understanding of the epitranscriptomic regulatory mechanisms of this disease as well as the development of novel therapeutic targets for future clinical benefit.
Collapse
Affiliation(s)
- Xinqian Geng
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People’s Hospital of Yunnan Province, Kunming, China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Yang
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
9
|
Fu BF, Xu CY. Transfer RNA-Derived Small RNAs: Novel Regulators and Biomarkers of Cancers. Front Oncol 2022; 12:843598. [PMID: 35574338 PMCID: PMC9096126 DOI: 10.3389/fonc.2022.843598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are conventional non-coding RNAs (ncRNAs) with a length between18 and 40 nucleotides (nt) playing a crucial role in treating various human diseases including tumours. Nowadays, with the use of high-throughput sequencing technologies, it has been proven that certain tsRNAs are dysregulated in multiple tumour tissues as well as in the blood serum of cancer patients. Meanwhile, data retrieved from the literature show that tsRNAs are correlated with the regulation of the hallmarks of cancer, modification of tumour microenvironment, and modulation of drug resistance. On the other side, the emerging role of tsRNAs as biomarkers for cancer diagnosis and prognosis is promising. In this review, we focus on the specific characteristics and biological functions of tsRNAs with a focus on their impact on various tumours and discuss the possibility of tsRNAs as novel potential biomarkers for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Bi-Fei Fu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chao-Yang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
10
|
Qu H, Fan C, Chen M, Zhang X, Yan Q, Wang Y, Zhang S, Gong Z, Shi L, Li X, Liao Q, Xiang B, Zhou M, Guo C, Li G, Zeng Z, Wu X, Xiong W. Recent advances of fluorescent biosensors based on cyclic signal amplification technology in biomedical detection. J Nanobiotechnology 2021; 19:403. [PMID: 34863202 PMCID: PMC8645109 DOI: 10.1186/s12951-021-01149-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The cyclic signal amplification technology has been widely applied for the ultrasensitive detection of many important biomolecules, such as nucleic acids, proteins, enzymes, adenosine triphosphate (ATP), metal ions, exosome, etc. Due to their low content in the complex biological samples, traditional detection methods are insufficient to satisfy the requirements for monitoring those biomolecules. Therefore, effective and sensitive biosensors based on cyclic signal amplification technology are of great significance for the quick and simple diagnosis and treatment of diseases. Fluorescent biosensor based on cyclic signal amplification technology has become a research hotspot due to its simple operation, low cost, short time, high sensitivity and high specificity. This paper introduces several cyclic amplification methods, such as rolling circle amplification (RCA), strand displacement reactions (SDR) and enzyme-assisted amplification (EAA), and summarizes the research progress of using this technology in the detection of different biomolecules in recent years, in order to provide help for the research of more efficient and sensitive detection methods.
Collapse
Affiliation(s)
- Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Pauli C, Kienhöfer M, Göllner S, Müller-Tidow C. Epitranscriptomic modifications in acute myeloid leukemia: m 6A and 2'- O-methylation as targets for novel therapeutic strategies. Biol Chem 2021; 402:1531-1546. [PMID: 34634841 DOI: 10.1515/hsz-2021-0286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/24/2021] [Indexed: 11/15/2022]
Abstract
Modifications of RNA commonly occur in all species. Multiple enzymes are involved as writers, erasers and readers of these modifications. Many RNA modifications or the respective enzymes are associated with human disease and especially cancer. Currently, the mechanisms how RNA modifications impact on a large number of intracellular processes are emerging and knowledge about the pathogenetic role of RNA modifications increases. In Acute Myeloid Leukemia (AML), the N6-methyladenosine (m6A) modification has emerged as an important modulator of leukemogenesis. The writer proteins METTL3 and METTL14 are both involved in AML pathogenesis and might be suitable therapeutic targets. Recently, close links between 2'-O-methylation (2'-O-me) of ribosomal RNA and leukemogenesis were discovered. The AML1-ETO oncofusion protein which specifically occurs in a subset of AML was found to depend on induction of snoRNAs and 2'-O-me for leukemogenesis. Also, NPM1, an important tumor suppressor in AML, was associated with altered snoRNAs and 2'-O-me. These findings point toward novel pathogenetic mechanisms and potential therapeutic interventions. The current knowledge and the implications are the topic of this review.
Collapse
Affiliation(s)
- Cornelius Pauli
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Kienhöfer
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Stefanie Göllner
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL)-Heidelberg University Hospital, 69117 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Motorin Y, Quinternet M, Rhalloussi W, Marchand V. Constitutive and variable 2'-O-methylation (Nm) in human ribosomal RNA. RNA Biol 2021; 18:88-97. [PMID: 34503375 PMCID: PMC8677024 DOI: 10.1080/15476286.2021.1974750] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
Epitranscriptomic modifications of stable RNAs are dynamically regulated and specific profiles of 2'-O-methylation in rRNA have been associated with distinct cancer types. However, these observations pointed out the existence of at least two distinct groups: a rather large group with constitutive rRNA Nm residues exhibiting a stable level of methylation and a more restricted set of variable modifications, giving rise to the concept of 'specialized ribosomes'. These heterogeneous ribosomes can modulate their translational properties and be key regulatory players, depending on the physiological state of the cell. However, these conclusions were drawn from a limited set of explored human cell lines or tissues, mostly related to cancer cells of the same type. Here, we report a comprehensive analysis of human rRNA Nm modification variability observed for >15 human cell lines grown in different media and conditions. Our data demonstrate that human Nm sites can be classified into four groups, depending on their observed variability. About ⅓ of rRNA 2'-O-methylations are almost invariably modified at the same level in all tested samples (stable modifications), the second group of relatively invariant modifications (another ½ of the total) showing a slightly higher variance (low variable group) and two variable groups, showing an important heterogeneity. Mapping of these four classes on the human ribosome 3D structure shows that stably modified positions are preferentially located in the important ribosome functional sites, while variable and highly variable residues are mostly distributed to the ribosome periphery. Possible relationships of such stable and variable modifications to the ribosome functions are discussed.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, UMR7365 IMoPA, F-54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, F-54000 Nancy, France
| | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, B2S Core Facility, F-54000 Nancy, France
| | - Wassim Rhalloussi
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, F-54000 Nancy, France
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, F-54000 Nancy, France
| |
Collapse
|
13
|
Dannfald A, Favory JJ, Deragon JM. Variations in transfer and ribosomal RNA epitranscriptomic status can adapt eukaryote translation to changing physiological and environmental conditions. RNA Biol 2021; 18:4-18. [PMID: 34159889 PMCID: PMC8677040 DOI: 10.1080/15476286.2021.1931756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 01/27/2023] Open
Abstract
The timely reprogramming of gene expression in response to internal and external cues is essential to eukaryote development and acclimation to changing environments. Chemically modifying molecular receptors and transducers of these signals is one way to efficiently induce proper physiological responses. Post-translation modifications, regulating protein biological activities, are central to many well-known signal-responding pathways. Recently, messenger RNA (mRNA) chemical (i.e. epitranscriptomic) modifications were also shown to play a key role in these processes. In contrast, transfer RNA (tRNA) and ribosomal RNA (rRNA) chemical modifications, although critical for optimal function of the translation apparatus, and much more diverse and quantitatively important compared to mRNA modifications, were until recently considered as mainly static chemical decorations. We present here recent observations that are challenging this view and supporting the hypothesis that tRNA and rRNA modifications dynamically respond to various cell and environmental conditions and contribute to adapt translation to these conditions.
Collapse
Affiliation(s)
- Arnaud Dannfald
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Jacques Favory
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Marc Deragon
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
14
|
Li J, Zhu WY, Yang WQ, Li CT, Liu RJ. The occurrence order and cross-talk of different tRNA modifications. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1423-1436. [PMID: 33881742 DOI: 10.1007/s11427-020-1906-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Chemical modifications expand the composition of RNA molecules from four standard nucleosides to over 160 modified nucleosides, which greatly increase the complexity and utility of RNAs. Transfer RNAs (tRNAs) are the most heavily modified cellular RNA molecules and contain the largest variety of modifications. Modification of tRNAs is pivotal for protein synthesis and also precisely regulates the noncanonical functions of tRNAs. Defects in tRNA modifications lead to numerous human diseases. Up to now, more than 100 types of modifications have been found in tRNAs. Intriguingly, some modifications occur widely on all tRNAs, while others only occur on a subgroup of tRNAs or even only a specific tRNA. The modification frequency of each tRNA is approximately 7% to 25%, with 5-20 modification sites present on each tRNA. The occurrence and modulation of tRNA modifications are specifically noticeable as plenty of interplays among different sites and modifications have been discovered. In particular, tRNA modifications are responsive to environmental changes, indicating their dynamic and highly organized nature. In this review, we summarized the known occurrence order, cross-talk, and cooperativity of tRNA modifications.
Collapse
Affiliation(s)
- Jing Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Yu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
15
|
Michalska K, Jedrzejczak R, Wower J, Chang C, Baragaña B, Gilbert IH, Forte B, Joachimiak A. Mycobacterium tuberculosis Phe-tRNA synthetase: structural insights into tRNA recognition and aminoacylation. Nucleic Acids Res 2021; 49:5351-5368. [PMID: 33885823 PMCID: PMC8136816 DOI: 10.1093/nar/gkab272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 02/02/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, responsible for ∼1.5 million fatalities in 2018, is the deadliest infectious disease. Global spread of multidrug resistant strains is a public health threat, requiring new treatments. Aminoacyl-tRNA synthetases are plausible candidates as potential drug targets, because they play an essential role in translating the DNA code into protein sequence by attaching a specific amino acid to their cognate tRNAs. We report structures of M. tuberculosis Phe-tRNA synthetase complexed with an unmodified tRNAPhe transcript and either L-Phe or a nonhydrolyzable phenylalanine adenylate analog. High-resolution models reveal details of two modes of tRNA interaction with the enzyme: an initial recognition via indirect readout of anticodon stem-loop and aminoacylation ready state involving interactions of the 3′ end of tRNAPhe with the adenylate site. For the first time, we observe the protein gate controlling access to the active site and detailed geometry of the acyl donor and tRNA acceptor consistent with accepted mechanism. We biochemically validated the inhibitory potency of the adenylate analog and provide the most complete view of the Phe-tRNA synthetase/tRNAPhe system to date. The presented topography of amino adenylate-binding and editing sites at different stages of tRNA binding to the enzyme provide insights for the rational design of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jacek Wower
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Changsoo Chang
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Beatriz Baragaña
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Barbara Forte
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
16
|
Martin WJ, Grandi P, Marcia M. Screening strategies for identifying RNA- and ribonucleoprotein-targeted compounds. Trends Pharmacol Sci 2021; 42:758-771. [PMID: 34215444 DOI: 10.1016/j.tips.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022]
Abstract
The past few years have witnessed important breakthroughs in the identification of compounds that specifically bind and regulate RNAs and in optimizing them for therapeutic use. Here, we review successful and unsuccessful approaches in screening for RNA-targeted small molecules. We discuss advantages and disadvantages of the different screening techniques and variables that affect the outcome of RNA-screening projects. We also highlight key challenges that hamper the development of quality RNA ligands, especially the still-low availability of RNA-specific compound libraries and the poor understanding of RNA structural dynamics. We conclude that the development of new RNA-targeting drugs would greatly benefit from integration of the power of high-throughput screening technologies with improved biochemical, structural, and computational characterization of RNA targets.
Collapse
Affiliation(s)
- William J Martin
- Cellzome GmbH, Functional Genomics R&D, GlaxoSmithKline, 69117 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Paola Grandi
- Cellzome GmbH, Functional Genomics R&D, GlaxoSmithKline, 69117 Heidelberg, Germany
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble 38042, France.
| |
Collapse
|
17
|
Wang H, Simpson JH, Kotra ME, Zhu Y, Wickramasinghe S, Mills DA, Chiu NHL. Epitranscriptomic profile of Lactobacillus agilis and its adaptation to growth on inulin. BMC Res Notes 2021; 14:154. [PMID: 33883017 PMCID: PMC8058956 DOI: 10.1186/s13104-021-05563-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022] Open
Abstract
Objective Ribonucleic acids (RNA) are involved in many cellular functions. In general, RNA is made up by only four different ribonucleotides. The modifications of RNA (epitranscriptome) can greatly enhance the structural diversity of RNA, which in turn support some of the RNA functions. To determine whether the epitranscriptome of a specific probiotic is associated with its adaptation to the source of energy, Lactobacillus agilis (YZ050) was selected as a model and its epitranscriptome was profiled and compared by using mass spectrometry. Results The L. agilis epitranscriptome (minus rRNA modifications) consists of 17 different RNA modifications. By capturing the L. agilis cells during exponential growth, reproducible profiling was achieved. In a comparative study, the standard source of energy (glucose) in the medium was substituted by a prebiotic inulin, and a downward trend in the L. agilis epitranscriptome was detected. This marks the first report on a system-wide variation of a bacterial epitranscriptome that resulted from adapting to an alternative energy source. No correlation was found between the down-regulated RNA modifications and the expression level of corresponding writer genes. Whereas, the expression level of a specific exonuclease gene, RNase J1, was detected to be higher in cells grown on inulin.
Collapse
Affiliation(s)
- Hongzhou Wang
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Jennifer H Simpson
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Madison E Kotra
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Yuanting Zhu
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | | | - David A Mills
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Norman H L Chiu
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, USA. .,Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, Greensboro, NC, USA.
| |
Collapse
|
18
|
Bell RT, Wolf YI, Koonin EV. Modified base-binding EVE and DCD domains: striking diversity of genomic contexts in prokaryotes and predicted involvement in a variety of cellular processes. BMC Biol 2020; 18:159. [PMID: 33148243 PMCID: PMC7641849 DOI: 10.1186/s12915-020-00885-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND DNA and RNA of all cellular life forms and many viruses contain an expansive repertoire of modified bases. The modified bases play diverse biological roles that include both regulation of transcription and translation, and protection against restriction endonucleases and antibiotics. Modified bases are often recognized by dedicated protein domains. However, the elaborate networks of interactions and processes mediated by modified bases are far from being completely understood. RESULTS We present a comprehensive census and classification of EVE domains that belong to the PUA/ASCH domain superfamily and bind various modified bases in DNA and RNA. We employ the "guilt by association" approach to make functional inferences from comparative analysis of bacterial and archaeal genomes, based on the distribution and associations of EVE domains in (predicted) operons and functional networks of genes. Prokaryotes encode two classes of EVE domain proteins, slow-evolving and fast-evolving ones. Slow-evolving EVE domains in α-proteobacteria are embedded in conserved operons, potentially involved in coupling between translation and respiration, cytochrome c biogenesis in particular, via binding 5-methylcytosine in tRNAs. In β- and γ-proteobacteria, the conserved associations implicate the EVE domains in the coordination of cell division, biofilm formation, and global transcriptional regulation by non-coding 6S small RNAs, which are potentially modified and bound by the EVE domains. In eukaryotes, the EVE domain-containing THYN1-like proteins have been reported to inhibit PCD and regulate the cell cycle, potentially, via binding 5-methylcytosine and its derivatives in DNA and/or RNA. We hypothesize that the link between PCD and cytochrome c was inherited from the α-proteobacterial and proto-mitochondrial endosymbiont and, unexpectedly, could involve modified base recognition by EVE domains. Fast-evolving EVE domains are typically embedded in defense contexts, including toxin-antitoxin modules and type IV restriction systems, suggesting roles in the recognition of modified bases in invading DNA molecules and targeting them for restriction. We additionally identified EVE-like prokaryotic Development and Cell Death (DCD) domains that are also implicated in defense functions including PCD. This function was inherited by eukaryotes, but in animals, the DCD proteins apparently were displaced by the extended Tudor family proteins, whose partnership with Piwi-related Argonautes became the centerpiece of the Piwi-interacting RNA (piRNA) system. CONCLUSIONS Recognition of modified bases in DNA and RNA by EVE-like domains appears to be an important, but until now, under-appreciated, common denominator in a variety of processes including PCD, cell cycle control, antivirus immunity, stress response, and germline development in animals.
Collapse
Affiliation(s)
- Ryan T Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
19
|
RNA methylations in human cancers. Semin Cancer Biol 2020; 75:97-115. [DOI: 10.1016/j.semcancer.2020.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 12/24/2022]
|
20
|
Mathlin J, Le Pera L, Colombo T. A Census and Categorization Method of Epitranscriptomic Marks. Int J Mol Sci 2020; 21:ijms21134684. [PMID: 32630140 PMCID: PMC7370119 DOI: 10.3390/ijms21134684] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few years, thorough investigation of chemical modifications operated in the cells on ribonucleic acid (RNA) molecules is gaining momentum. This new field of research has been dubbed “epitranscriptomics”, in analogy to best-known epigenomics, to stress the potential of ensembles of RNA modifications to constitute a post-transcriptional regulatory layer of gene expression orchestrated by writer, reader, and eraser RNA-binding proteins (RBPs). In fact, epitranscriptomics aims at identifying and characterizing all functionally relevant changes involving both non-substitutional chemical modifications and editing events made to the transcriptome. Indeed, several types of RNA modifications that impact gene expression have been reported so far in different species of cellular RNAs, including ribosomal RNAs, transfer RNAs, small nuclear RNAs, messenger RNAs, and long non-coding RNAs. Supporting functional relevance of this largely unknown regulatory mechanism, several human diseases have been associated directly to RNA modifications or to RBPs that may play as effectors of epitranscriptomic marks. However, an exhaustive epitranscriptome’s characterization, aimed to systematically classify all RNA modifications and clarify rules, actors, and outcomes of this promising regulatory code, is currently not available, mainly hampered by lack of suitable detecting technologies. This is an unfortunate limitation that, thanks to an unprecedented pace of technological advancements especially in the sequencing technology field, is likely to be overcome soon. Here, we review the current knowledge on epitranscriptomic marks and propose a categorization method based on the reference ribonucleotide and its rounds of modifications (“stages”) until reaching the given modified form. We believe that this classification scheme can be useful to coherently organize the expanding number of discovered RNA modifications.
Collapse
Affiliation(s)
- Julia Mathlin
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Correspondence: (J.M.); (L.L.P.); Tel.: +39-06-4991-0556 (L.L.P.)
| | - Loredana Le Pera
- CNR-Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70126 Bari, Italy
- CNR-Institute of Molecular Biology and Pathology (IBPM), 00185 Rome, Italy;
- Correspondence: (J.M.); (L.L.P.); Tel.: +39-06-4991-0556 (L.L.P.)
| | - Teresa Colombo
- CNR-Institute of Molecular Biology and Pathology (IBPM), 00185 Rome, Italy;
| |
Collapse
|