1
|
Klamruen P, Suttiwong J, Aneksan B, Muangngoen M, Denduang C, Klomjai W. Effects of Anodal Transcranial Direct Current Stimulation With Overground Gait Training on Lower Limb Performance in Individuals With Incomplete Spinal Cord Injury. Arch Phys Med Rehabil 2024; 105:857-867. [PMID: 37926224 DOI: 10.1016/j.apmr.2023.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To determine the effects of anodal transcranial direct current stimulation (tDCS) combined with overground gait training on gait performance, dynamic balance, sit-to-stand performance, and quality of life in individuals with incomplete spinal cord injuries (iSCI). DESIGN Double-blind sham-controlled trial with a matched-pair design. SETTING Sirindhorn National Medical Rehabilitation Institute, Thailand. PARTICIPANTS Individuals with iSCI (n=34) were allocated to the anodal or sham groups. INTERVENTION Anodal tDCS was administered over the M1 lower-limb motor area at an intensity of 2 mA for 20 min in the anodal group, while the sham group received a 30-s stimulation. Both groups received 40 min of overground gait training after tDCS for 5 consecutive daily sessions. MAIN OUTCOME MEASURES The 10-meter walk test (10MWT) was the primary outcome, while spatiotemporal gait parameters, the timed Up and Go test, Five-Time Sit-to-Stand Test, and World Health Organization Quality of Life-BREF were secondary outcomes. Outcomes were assessed at baseline, post-intervention, and at 1-month (1M) and 2-month (2M) follow-ups. RESULT Improvements in walking speed measured using the 10MWT were observed in both groups. However, the anodal group showed a greater improvement than the sham group. For fast speed, the mean between-group differences were 0.10 m/s, 95% CI (0.02 to 0.17) (post-intervention), 0.11 m/s, (0.03 to 0.19) (1M), and 0.11 m/s, (0.03 to 0.20) (2M), while for self-selected speed, the median differences were 0.10 m/s, 95% CI (0.06 to 0.14) (post-intervention) and 0.09 m/s, (0.01 to 0.19) (2M). The anodal group also had a greater stride length difference post-intervention (median difference: 0.07 m, 95% CI (0.01 to 0.14)). No significant between-group differences were found for other outcomes. CONCLUSION Five-session of anodal tDCS with gait training slightly improved walking speed, sustained for 2 months post-intervention. However, effect on spatiotemporal gait parameters was limited and dynamic balance, functional tasks (ie, sit-to-stand), and quality of life were unaffected compared with overground gait training.
Collapse
Affiliation(s)
- Pipat Klamruen
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand; Neuro Electrical Stimulation Laboratory (NeuE), Mahidol University, Nakhon Pathom, Thailand; Physical Therapy Unit, Sirindhorn National Medical Rehabilitation Institute, Nonthaburi, Thailand
| | - Jatuporn Suttiwong
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Benchaporn Aneksan
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand; Neuro Electrical Stimulation Laboratory (NeuE), Mahidol University, Nakhon Pathom, Thailand
| | - Monticha Muangngoen
- Physical Therapy Unit, Sirindhorn National Medical Rehabilitation Institute, Nonthaburi, Thailand
| | - Chanapass Denduang
- Physical Therapy Unit, Sirindhorn National Medical Rehabilitation Institute, Nonthaburi, Thailand
| | - Wanalee Klomjai
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand; Neuro Electrical Stimulation Laboratory (NeuE), Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Jervis-Rademeyer H, Cheung L, Cesca N, Gauthier C, Walden K, Musselman KE. Implementing Activity-Based Therapy for Spinal Cord Injury Rehabilitation in Canada: Challenges and Proposed Solutions. Healthcare (Basel) 2024; 12:703. [PMID: 38610126 PMCID: PMC11011823 DOI: 10.3390/healthcare12070703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Activity-based therapy (ABT) is a therapeutic approach with multiple benefits including promoting neurorecovery and reducing the likelihood of secondary complications in people living with spinal cord injury (SCI). Barriers and facilitators to ABT implementation for SCI rehabilitation have been studied from various perspectives through qualitative research. However, these viewpoints have not been synthesized to identify challenges of and strategies for implementing ABT across the Canadian healthcare system. Thus, the purpose of our study was to examine the current state of ABT in Canadian healthcare settings according to users' perspectives. Our main objectives were to compare barriers and facilitators to ABT implementation across Canadian healthcare settings according to users' perspectives and to identify optimal intervention strategies for ABT delivery across the Canadian healthcare system from acute to community care. We searched Scopus, CINAHL, OvidMedline, and other sources. Eligible articles were qualitative or mixed methods studies exploring ABT for adults with SCI in a Canadian healthcare setting. We analyzed qualitative findings through a thematic synthesis followed by a deductive content analysis. The Mixed Methods Appraisal Tool was used for critical appraisal. Nine articles were included. The thematic synthesis revealed two main themes: (1) factors influencing acceptance and adaptation of ABT across healthcare settings in Canada and (2) proposed solutions. The deductive analysis applied the Behaviour Change Wheel (BCW) to identify limited components of behaviour and appropriate interventions. To address ABT implementation challenges across the Canadian healthcare system, evidence-based interventions should target BCW subcategories of reflective motivation, social opportunity, and physical opportunity.
Collapse
Affiliation(s)
- Hope Jervis-Rademeyer
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Lovisa Cheung
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada; (L.C.); (N.C.); (K.E.M.)
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M4G 3V9, Canada
- Department of Physical Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Nicole Cesca
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada; (L.C.); (N.C.); (K.E.M.)
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M4G 3V9, Canada
| | - Cindy Gauthier
- School of Rehabilitation, Faculty of Medicine, University of Montreal, Montreal, QC H3N 1X7, Canada
| | - Kristen Walden
- Praxis Spinal Cord Institute, Vancouver, BC V5Z 1M9, Canada
| | - Kristin E. Musselman
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada; (L.C.); (N.C.); (K.E.M.)
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M4G 3V9, Canada
- Department of Physical Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
| |
Collapse
|
3
|
Lin BS, Zhang Z, Peng CW, Chen SH, Chan WP, Lai CH. Effectiveness of Repetitive Transcranial Magnetic Stimulation Combined With Transspinal Electrical Stimulation on Corticospinal Excitability for Individuals With Incomplete Spinal Cord Injury: A Pilot Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4790-4800. [PMID: 38032783 DOI: 10.1109/tnsre.2023.3338226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) and transspinal electrical stimulation (tsES) have been proposed as a novel neurostimulation modality for individuals with incomplete spinal cord injury (iSCI). In this study, we integrated magnetic and electrical stimulators to provide neuromodulation therapy to individuals with incomplete spinal cord injury (iSCI). We designed a clinical trial comprising an 8-week treatment period and a 4-week treatment-free observation period. Cortical excitability, clinical features, inertial measurement unit and surface electromyography were assessed every 4 weeks. Twelve individuals with iSCI were recruited and randomly divided into a combined therapy group, a magnetic stimulation group, an electrical stimulation group, or a sham stimulation group. The magnetic and electric stimulations provided in this study were intermittent theta-burst stimulation (iTBS) and 2.5-mA direct current (DC) stimulation, respectively. Combined therapy, which involves iTBS and transspinal DC stimulation (tsDCS), was more effective than was iTBS alone or tsDCS alone in terms of increasing corticospinal excitability. In conclusion, the effectiveness of 8-week combined therapy in increasing corticospinal excitability faded 4 weeks after the cessation of treatment. According to the results, combination of iTBS rTMS and tsDCS treatment was more effective than was iTBS rTMS alone or tsDCS alone in enhancing corticospinal excitability. Although promising, the results of this study must be validated by studies with longer interventions and larger sample sizes.
Collapse
|
4
|
Martins Â, Gouveia D, Cardoso A, Viegas I, Gamboa Ó, Ferreira A. A Comparison Between Body Weight-Supported Treadmill Training and Conventional Over-Ground Training in Dogs With Incomplete Spinal Cord Injury. Front Vet Sci 2021; 8:597949. [PMID: 34277746 PMCID: PMC8280520 DOI: 10.3389/fvets.2021.597949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
In human medicine there was no evidence registered of a significant difference in recovery between body weight-supported treadmill training (BWSTT) and conventional over-ground (COGI). There isn't any similar study in veterinary medicine. Thus, this study aimed to compare the locomotor recovery obtained in incomplete SCI (T11–L3 Hansen type I) post-surgical dogs following BWSTT or COGI protocols, describing their evolution during 7 weeks in regard to OFS classifications. At admission, dogs were blindly randomized in two groups but all were subjected to the same protocol (underwater treadmill training) for the first 2 weeks. After, they were divided in the BWSTT group (n = 10) and the COGI group (n = 10) for the next 2 weeks, where they performed different training. In both groups locomotor training was accompanied by functional electrical stimulation (FES) protocols. Results reported statistically significant differences between all OFS evaluations time-points (p < 0.001) and between the two groups (p < 0.001). In particular with focus on T1 to T3 a two-way repeated measures ANOVA was performed and similar results were obtained (p = 0.007). Functional recovery was achieved in 90% (17/19) of all dogs and 100% recovered bladder function. The BWSTT group showed 100% (10/10) recovery within a mean time of 4.6 weeks, while the COGI group had 78% (7/9) within 6.1 weeks. Therefore, BWSTT leads to a faster recovery with a better outcome in general.
Collapse
Affiliation(s)
- Ângela Martins
- Arrábida Veterinary Hospital-Animal Rehabilitation Center, Azeitão, Portugal.,Faculty of Veterinary Medicine, Lusófona University, Lisboa, Portugal.,CIISA-Centro Interdisciplinar de Investigação em Saúde Animal-Faculty of Veterinary Medicine, Lisboa, Portugal
| | - Débora Gouveia
- Arrábida Veterinary Hospital-Animal Rehabilitation Center, Azeitão, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital-Animal Rehabilitation Center, Azeitão, Portugal
| | - Inês Viegas
- Arrábida Veterinary Hospital-Animal Rehabilitation Center, Azeitão, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | - António Ferreira
- CIISA-Centro Interdisciplinar de Investigação em Saúde Animal-Faculty of Veterinary Medicine, Lisboa, Portugal.,Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
5
|
Cheng X, Xiao F, Xie R, Hu H, Wan Y. Alternate thermal stimulation ameliorates thermal sensitivity and modulates calbindin-D 28K expression in lamina I and II and dorsal root ganglia in a mouse spinal cord contusion injury model. FASEB J 2020; 35:e21173. [PMID: 33225523 DOI: 10.1096/fj.202001775r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/30/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Neuropathic pain (NP) is a common complication that negatively affects the lives of patients with spinal cord injury (SCI). The disruption in the balance of excitatory and inhibitory neurons in the spinal cord dorsal horn contributes to the development of SCI and induces NP. The calcium-binding protein (CaBP) calbindin-D 28K (CaBP-28K) is highly expressed in excitatory interneurons, and the CaBP parvalbumin (PV) is present in inhibitory neurons in the dorsal horn. To better define the changes in the CaBPs contributing to the development of SCI-induced NP, we examined the changes in CaBP-28K and PV staining density in the lumbar (L4-6) lamina I and II, and their relationship with NP after mild spinal cord contusion injury in mice. We additionally examined the effects of alternate thermal stimulation (ATS). Compared with sham mice, injured animals developed mechanical allodynia in response to light mechanical stimuli and exhibited mechanical hyporesponsiveness to noxious mechanical stimuli. The decreased response latency to heat stimuli and increased response latency to cold stimuli at 7 days post injury suggested that the injured mice developed heat hyperalgesia and cold hypoalgesia, respectively. Temperature preference tests showed significant warm allodynia after injury. Animals that underwent ATS (15-18 and 35-40°C; +5 minutes/stimulation/day; 5 days/week) displayed significant amelioration of heat hyperalgesia, cold hypoalgesia, and warm allodynia after 2 weeks of ATS. In contrast, mechanical sensitivity was not influenced by ATS. Analysis of the CaBP-28K positive signal in L4-6 lamina I and II indicated an increase in staining density after SCI, which was associated with an increase in the number of CaBP-28K-stained L4-6 dorsal root ganglion (DRG) neurons. ATS decreased the CaBP-28K staining density in L4-6 spinal cord and DRG in injured animals, and was significantly and strongly correlated with ATS alleviation of pain behavior. The expression of PV showed no changes in lamina I and II after ATS in SCI animals. Thus, ATS partially decreases the pain behavior after SCI by modulating the changes in CaBP-associated excitatory-inhibitory neurons.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Spinal Cord Injury Center, Heidelberg University, Heidelberg, Germany
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Rong Xie
- Department of Thyroid Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Moore SA, Tipold A, Olby NJ, Stein V, Granger N. Current Approaches to the Management of Acute Thoracolumbar Disc Extrusion in Dogs. Front Vet Sci 2020; 7:610. [PMID: 33117847 PMCID: PMC7521156 DOI: 10.3389/fvets.2020.00610] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Intervertebral disc extrusion (IVDE) is one of the most common neurologic problems encountered in veterinary clinical practice. The purpose of this manuscript is to provide an overview of the literature related to treatment of acute canine thoracolumbar IVDE to help construct a framework for standard care of acute canine thoracolumbar IVDE where sufficient evidence exists and to highlight opportunities for future prospective veterinary clinical research useful to strengthen care recommendations in areas where evidence is low or non-existent. While there exist a number of gaps in the veterinary literature with respect to standards of care for dogs with acute thoracolumbar IVDE, recommendations for standard care can be made in some areas, particularly with respect to surgical decompression where the currently available evidence supports that surgery should be recommended for dogs with nonambulatory paraparesis or worse. While additional information is needed about the influence on timing of decompression on outcome in dogs that are deep pain negative for longer than 48 h duration, there is no evidence to support treatment of the 48 h time point as a cut off beyond which it becomes impossible for dogs to achieve locomotor recovery. Surgical decompression is best accomplished by either hemilaminectomy or mini-hemilaminectomy and fenestration of, at a minimum, the acutely ruptured disc. Adjacent discs easily accessed by way of the same approach should be considered for fenestration given the evidence that this substantially reduces future herniation at fenestrated sites. Currently available neuroprotective strategies such as high does MPSS and PEG are not recommended due to lack of demonstrated treatment effect in randomized controlled trials, although the role of anti-inflammatory steroids as a protective strategy against progressive myelomalacia and the question of whether anti-inflammatory steroids or NSAIDs provide superior medical therapy require further evaluation.
Collapse
Affiliation(s)
- Sarah A Moore
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
| | - Andrea Tipold
- Department Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Natasha J Olby
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States
| | - Veronica Stein
- Division of Clinical Neurology, Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Granger
- The Royal Veterinary College, University of London, Hatfield, United Kingdom.,CVS Referrals, Bristol Veterinary Specialists at Highcroft, Bristol, United Kingdom
| | | |
Collapse
|
7
|
Korupolu R, Stampas A, Singh M, Zhou P, Francisco G. Electrophysiological Outcome Measures in Spinal Cord Injury Clinical Trials: A Systematic Review. Top Spinal Cord Inj Rehabil 2020; 25:340-354. [PMID: 31844386 DOI: 10.1310/sci2504-340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Electrophysiological measures are being increasingly utilized due to their ability to provide objective measurements with minimal bias and to detect subtle changes with quantitative data on neural function. Heterogeneous reporting of trial outcomes limits effective interstudy comparison and optimization of treatment. Objective: The objective of this systematic review is to describe the reporting of electrophysiological outcome measures in spinal cord injury (SCI) clinical trials in order to inform a subsequent consensus study. Methods: A systematic search of PubMed and EMBASE databases was conducted according to PRISMA guidelines. Adult human SCI clinical trials published in English between January 1, 2008 and September 15, 2018 with at least one electrophysiological outcome measure were eligible. Findings were reviewed by all authors to create a synthesis narrative describing each outcome measure. Results: Sixty-four SCI clinical trials were included in this review. Identified electrophysiological outcomes included electromyography activity (44%), motor evoked potentials (33%), somatosensory evoked potentials (33%), H-reflex (20%), reflex electromyography activity (11%), nerve conduction studies (9%), silent period (3%), contact heat evoked potentials (2%), and sympathetic skin response (2%). Heterogeneity was present in regard to both methods of measurement and reporting of electrophysiological outcome measures. Conclusion: This review demonstrates need for the development of a standardized reporting set for electrophysiological outcome measures. Limitations of this review include exclusion of non-English publications, studies more than 10 years old, and an inability to assess methodological quality of primary studies due to a lack of guidelines on reporting of systematic reviews of outcome measures.
Collapse
Affiliation(s)
- Radha Korupolu
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Argyrios Stampas
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Mani Singh
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Gerard Francisco
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| |
Collapse
|
8
|
Batty NJ, Torres-Espín A, Vavrek R, Raposo P, Fouad K. Single-session cortical electrical stimulation enhances the efficacy of rehabilitative motor training after spinal cord injury in rats. Exp Neurol 2019; 324:113136. [PMID: 31786212 DOI: 10.1016/j.expneurol.2019.113136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/28/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
Low neuronal cAMP levels in adults and a further decline following traumatic central nervous system (CNS) injury has been associated with the limited ability of neurons to regenerate. An approach to increase neuronal cAMP levels post injury is electrical stimulation. Stimulation as a tool to promote neuronal growth has largely been studied in the peripheral nervous system or in spared fibers of the CNS and this research suggests that a single session of electrical stimulation is sufficient to initiate a long-lasting axonal growth program. Here, we sought to promote plasticity and growth of the injured corticospinal tract with electrical cortical stimulation immediately after its spinal injury. Moreover, given the importance of rehabilitative motor training in the clinical setting and in translating plasticity into functional recovery, we applied training as a standard treatment to all rats (i.e., with or without electrical stimulation). Our findings show that electrical cortical stimulation did improve recovery in forelimb function compared to the recovery in unstimulated animals. This recovery is likely linked to increased corticospinal tract plasticity as evidenced by a significant increase in sprouting of collaterals above the lesion site, but not to increased regenerative growth through the lesion itself.
Collapse
Affiliation(s)
- Nicholas J Batty
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Abel Torres-Espín
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Romana Vavrek
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela Raposo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Khan AS, Livingstone DC, Hurd CL, Duchcherer J, Misiaszek JE, Gorassini MA, Manns PJ, Yang JF. Retraining walking over ground in a powered exoskeleton after spinal cord injury: a prospective cohort study to examine functional gains and neuroplasticity. J Neuroeng Rehabil 2019; 16:145. [PMID: 31752911 PMCID: PMC6868817 DOI: 10.1186/s12984-019-0585-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Background Powered exoskeletons provide a way to stand and walk for people with severe spinal cord injury. Here, we used the ReWalk exoskeleton to determine the training dosage required for walking proficiency, the sensory and motor changes in the nervous system with training, and the functionality of the device in a home-like environment. Methods Participants with chronic (> 1 yr) motor complete or incomplete spinal cord injury, who were primarily wheelchair users, were trained to walk in the ReWalk for 12 weeks. Measures were taken before, during, immediately after, and 2–3 months after training. Measures included walking progression, sitting balance, skin sensation, spasticity, and strength of the corticospinal tracts. Results Twelve participants were enrolled with 10 completing training. Training progression and walking ability: The progression in training indicated about 45 sessions to reach 80% of final performance in training. By the end of training, participants walked at speeds of 0.28–0.60 m/s, and distances of 0.74–1.97 km in 1 h. The effort of walking was about 3.3 times that for manual wheelchair propulsion. One non-walker with an incomplete injury became a walker without the ReWalk after training. Sensory and motor measures: Sitting balance was improved in some, as seen from the limits of stability and sway speed. Neuropathic pain showed no long term changes. Change in spasticity was mixed with suggestion of differences between those with high versus low spasticity prior to training. The strength of motor pathways from the brain to back extensor muscles remained unchanged. Adverse events: Minor adverse events were encountered by the participants and trainer (skin abrasions, non-injurious falls). Field testing: The majority of participants could walk on uneven surfaces outdoors. Some limitations were encountered in home-like environments. Conclusion For individuals with severe SCI, walking proficiency in the ReWalk requires about 45 sessions of training. The training was accompanied by functional improvements in some, especially in people with incomplete injuries. Trial registration NCT02322125 Registered 22 December 2014. Electronic supplementary material The online version of this article (10.1186/s12984-019-0585-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atif S Khan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Donna C Livingstone
- Department of Physical Therapy, University of Alberta, 2-50 Corbett Hall, Edmonton, AB, T6G 2G4, Canada
| | - Caitlin L Hurd
- Department of Physical Therapy, University of Alberta, 2-50 Corbett Hall, Edmonton, AB, T6G 2G4, Canada
| | | | - John E Misiaszek
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Occupational Therapy, University of Alberta, Edmonton, Alberta, Canada
| | - Monica A Gorassini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia J Manns
- Department of Physical Therapy, University of Alberta, 2-50 Corbett Hall, Edmonton, AB, T6G 2G4, Canada
| | - Jaynie F Yang
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada. .,Department of Physical Therapy, University of Alberta, 2-50 Corbett Hall, Edmonton, AB, T6G 2G4, Canada.
| |
Collapse
|
10
|
Spinal Cord Epidural Stimulation for Lower Limb Motor Function Recovery in Individuals with Motor Complete Spinal Cord Injury. Phys Med Rehabil Clin N Am 2019; 30:337-354. [DOI: 10.1016/j.pmr.2018.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Onushko T, Mahtani GB, Brazg G, Hornby TG, Schmit BD. Exercise-Induced Alterations in Sympathetic-Somatomotor Coupling in Incomplete Spinal Cord Injury. J Neurotrauma 2019; 36:2688-2697. [PMID: 30696387 DOI: 10.1089/neu.2018.5719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to understand how high- and low-intensity locomotor training (LT) affects sympathetic-somatomotor (SS) coupling in people with incomplete spinal cord injury (SCI). Proper coupling between sympathetic and somatomotor systems allows controlled regulation of cardiovascular responses to exercise. In people with SCI, altered connectivity between descending pathways and spinal segments impairs sympathetic and somatomotor coordination, which may have deleterious effects during exercise and limit rehabilitation outcomes. We postulated that high-intensity LT, which repeatedly engages SS systems, would alter SS coupling. Thirteen individuals (50 ± 7.2 years) with motor incomplete spinal cord injuries (American Spinal Injury Association Impairment Scale C or D; injury level >T6) participated in a locomotor treadmill training program. Patients were randomized into either a high-intensity (high-LT; 70-85% of maximum predicted heart rate; n = 6) group or a low-intensity (low-LT; 50-65% of maximum predicted heart rate; n = 7) group and completed up to 20 LT training sessions over 4-6 weeks, 3-5 days/week. Before and after taining, we tested SS coupling by eliciting reflexive sympathetic activity through a cold stimulation, noxious stimulation, and a mental math task while we measured tendon reflexes, blood pressure, and heart rate. Participants who completed high- versus low-LT exhibited significant decreases in reflex torques during triggered sympathetic activity (cold: -83 vs. 13%, p < 0.01; pain: -65 vs. 54%, p < 0.05; mental math: -43 vs. 41%; p < 0.05). Mean arterial pressure responses to sympathetic stimuli were slightly higher following high- versus low-LT (cold: 30 vs. -1.5%; pain: 6 vs. -12%; mental math: 5 vs. 7%), although differences were not statistically significant. These results suggest that high-LT may be advantageous to low-LT to improve SS coupling in people with incomplete SCI.
Collapse
Affiliation(s)
- Tanya Onushko
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | - Gordhan B Mahtani
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | | | - T George Hornby
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
12
|
Zhou R, Alvarado L, Kim S, Chong SL, Mushahwar VK. Modulation of corticospinal input to the legs by arm and leg cycling in people with incomplete spinal cord injury. J Neurophysiol 2017; 118:2507-2519. [PMID: 28701544 PMCID: PMC5646203 DOI: 10.1152/jn.00663.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 11/22/2022] Open
Abstract
The spinal cervico-lumbar interaction during rhythmic movements in humans has recently been studied; however, the role of arm movements in modulating the corticospinal drive to the legs is not well understood. The goals of this study were to investigate the effect of active rhythmic arm movements on the corticospinal drive to the legs (study 1) and assess the effect of simultaneous arm and leg training on the corticospinal pathway after incomplete spinal cord injury (iSCI) (study 2). In study 1, neurologically intact (NI) participants or participants with iSCI performed combinations of stationary and rhythmic cycling of the arms and legs while motor evoked potentials (MEPs) were recorded from the vastus lateralis (VL) muscle. In the NI group, arm cycling alone could facilitate the VL MEP amplitude, suggesting that dynamic arm movements strongly modulate the corticospinal pathway to the legs. No significant difference in VL MEP between conditions was found in participants with iSCI. In study 2, participants with iSCI underwent 12 wk of electrical stimulation-assisted cycling training: one group performed simultaneous arm and leg (A&L) cycling and the other legs-only cycling. MEPs in the tibialis anterior (TA) muscle were compared before and after training. After training, only the A&L group had a significantly larger TA MEP, suggesting increased excitability in the corticospinal pathway. The findings demonstrate the importance of arm movements in modulating the corticospinal drive to the legs and suggest that active engagement of the arms in lower limb rehabilitation may produce better neural regulation and restoration of function.NEW & NOTEWORTHY This study aimed to demonstrate the importance of arm movements in modulating the corticospinal drive to the legs. It provides direct evidence in humans that active movement of the arms could facilitate corticospinal transmission to the legs and, for the first time, shows that facilitation is absent after spinal cord injury. Active engagement of the arms in lower limb rehabilitation increased the excitability of the corticospinal pathway and may produce more effective improvement in leg function.
Collapse
Affiliation(s)
- R Zhou
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - L Alvarado
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - S Kim
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - S L Chong
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - V K Mushahwar
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada;
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Field-Fote EC, Yang JF, Basso DM, Gorassini MA. Supraspinal Control Predicts Locomotor Function and Forecasts Responsiveness to Training after Spinal Cord Injury. J Neurotrauma 2016; 34:1813-1825. [PMID: 27673569 DOI: 10.1089/neu.2016.4565] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Restoration of walking ability is an area of great interest in the rehabilitation of persons with spinal cord injury. Because many cortical, subcortical, and spinal neural centers contribute to locomotor function, it is important that intervention strategies be designed to target neural elements at all levels of the neuraxis that are important for walking ability. While to date most strategies have focused on activation of spinal circuits, more recent studies are investigating the value of engaging supraspinal circuits. Despite the apparent potential of pharmacological, biological, and genetic approaches, as yet none has proved more effective than physical therapeutic rehabilitation strategies. By making optimal use of the potential of the nervous system to respond to training, strategies can be developed that meet the unique needs of each person. To complement the development of optimal training interventions, it is valuable to have the ability to predict future walking function based on early clinical presentation, and to forecast responsiveness to training. A number of clinical prediction rules and association models based on common clinical measures have been developed with the intent, respectively, to predict future walking function based on early clinical presentation, and to delineate characteristics associated with responsiveness to training. Further, a number of variables that are correlated with walking function have been identified. Not surprisingly, most of these prediction rules, association models, and correlated variables incorporate measures of volitional lower extremity strength, illustrating the important influence of supraspinal centers in the production of walking behavior in humans.
Collapse
Affiliation(s)
- Edelle C Field-Fote
- 1 Shepherd Center, Crawford Research Institute and Division of Physical Therapy, Emory University , Atlanta, Georgia
| | - Jaynie F Yang
- 2 Department of Physical Therapy, Faculty of Rehabilitation Medicine and Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta, Canada
| | - D Michele Basso
- 3 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio
| | - Monica A Gorassini
- 4 Department of Biomedical Engineering, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Côté MP, Murray M, Lemay MA. Rehabilitation Strategies after Spinal Cord Injury: Inquiry into the Mechanisms of Success and Failure. J Neurotrauma 2016; 34:1841-1857. [PMID: 27762657 DOI: 10.1089/neu.2016.4577] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Body-weight supported locomotor training (BWST) promotes recovery of load-bearing stepping in lower mammals, but its efficacy in individuals with a spinal cord injury (SCI) is limited and highly dependent on injury severity. While animal models with complete spinal transections recover stepping with step-training, motor complete SCI individuals do not, despite similarly intensive training. In this review, we examine the significant differences between humans and animal models that may explain this discrepancy in the results obtained with BWST. We also summarize the known effects of SCI and locomotor training on the muscular, motoneuronal, interneuronal, and supraspinal systems in human and non-human models of SCI and address the potential causes for failure to translate to the clinic. The evidence points to a deficiency in neuronal activation as the mechanism of failure, rather than muscular insufficiency. While motoneuronal and interneuronal systems cannot be directly probed in humans, the changes brought upon by step-training in SCI animal models suggest a beneficial re-organization of the systems' responsiveness to descending and afferent feedback that support locomotor recovery. The literature on partial lesions in humans and animal models clearly demonstrate a greater dependency on supraspinal input to the lumbar cord in humans than in non-human mammals for locomotion. Recent results with epidural stimulation that activates the lumbar interneuronal networks and/or increases the overall excitability of the locomotor centers suggest that these centers are much more dependent on the supraspinal tonic drive in humans. Sensory feedback shapes the locomotor output in animal models but does not appear to be sufficient to drive it in humans.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Marion Murray
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Michel A Lemay
- 2 Department of Bioengineering, Temple University , Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Training-Specific Neural Plasticity in Spinal Reflexes after Incomplete Spinal Cord Injury. Neural Plast 2016; 2016:6718763. [PMID: 27725887 PMCID: PMC5048024 DOI: 10.1155/2016/6718763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/27/2016] [Accepted: 08/03/2016] [Indexed: 11/17/2022] Open
Abstract
The neural plasticity of spinal reflexes after two contrasting forms of walking training was determined in individuals with chronic, motor-incomplete spinal cord injury (SCI). Endurance Training involved treadmill walking for as long as possible, and Precision Training involved walking precisely over obstacles and onto targets overground. Twenty participants started either Endurance or Precision Training for 2 months and then crossed over after a 2-month rest period to the other form of training for 2 months. Measures were taken before and after each phase of training and rest. The cutaneomuscular reflex (CMR) during walking was evoked in the soleus (SOL) and tibialis anterior muscles by stimulating the posterior tibial nerve at the ankle. Clonus was estimated from the EMG power in the SOL during unperturbed walking. The inhibitory component of the SOL CMR was enhanced after Endurance but not Precision Training. Clonus did not change after either form of training. Participants with lower reflex excitability tended to be better walkers (i.e., faster walking speeds) prior to training, and the reduction in clonus was significantly correlated with the improvement in walking speed and distance. Thus, reflex excitability responded in a training-specific way, with the reduction in reflex excitability related to improvements in walking function. Trial registration number is NCT01765153.
Collapse
|
16
|
Condliffe EG, Jeffery DT, Emery DJ, Gorassini MA. Spinal inhibition and motor function in adults with spastic cerebral palsy. J Physiol 2016; 594:2691-705. [PMID: 26842905 DOI: 10.1113/jp271886] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/01/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Abnormal activation of motoneurons in the spinal cord by sensory pathways is thought to contribute to impaired movement control and spasticity in individuals with cerebral palsy. Here we use single motor unit recordings to show how individual motoneurons in the spinal cord respond to sensory inputs in a group of participants with cerebral palsy having different degrees of motor dysfunction. In participants who had problems walking independently and required assistive devices such as wheelchairs, sensory pathways only excited motoneurons in the spinal cord. In contrast, in participants with cerebral palsy who walked independently for long distances, sensory inputs both inhibited and excited motoneurons in the spinal cord, similar to what we found in uninjured control participants. These findings demonstrate that in individuals with severe cerebral palsy, inhibitory control of motoneurons from sensory pathways is reduced and may contribute to motor dysfunction and spasticity. ABSTRACT Reduced inhibition of spinal motoneurons by sensory pathways may contribute to heightened reflex activity, spasticity and impaired motor function in individuals with cerebral palsy (CP). To measure if the activation of inhibitory post-synaptic potentials (IPSPs) by sensory inputs is reduced in CP, the tonic discharge rate of single motor units from the soleus muscle was plotted time-locked to the occurrence of a sensory stimulation to produce peri-stimulus frequencygrams (PSFs). Stimulation to the medial arch of the foot was used to activate cutaneomuscular afferents in 17 adults with bilateral spastic CP and 15 neurologically intact (NI) peers. Evidence of IPSP activation from the PSF profiles, namely a marked pause or reduction in motor unit firing rates at the onset of the cutaneomuscular reflex, was found in all NI participants but in only half of participants with CP. In the other half of the participants with CP, stimulation of cutaneomuscular afferents produced a PSF profile indicative of a pure excitatory post-synaptic potential, with firing rates increasing above the mean pre-stimulus rate for 300 ms or more. The amplitude of motoneuron inhibition during the period of IPSP activation, as measured from the surface EMG, was less in participants with poor motor function as evaluated with the Gross Motor Functional Classification System (r = 0.72, P < 0.001) and the Functional Mobility Scale (r = -0.82, P < 0.001). These findings demonstrate that in individuals with CP, reduced activation of motoneuron IPSPs by sensory inputs is associated with reduced motor function and may contribute to enhanced reflexes and spasticity in CP.
Collapse
Affiliation(s)
- E G Condliffe
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Alberta, Canada
| | - D T Jeffery
- Department of Radiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - D J Emery
- Department of Radiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - M A Gorassini
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Implantable neurotechnologies: electrical stimulation and applications. Med Biol Eng Comput 2016; 54:63-76. [PMID: 26753775 DOI: 10.1007/s11517-015-1442-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/14/2015] [Indexed: 12/23/2022]
Abstract
Neural stimulation using injected electrical charge is widely used both in functional therapies and as an experimental tool for neuroscience applications. Electrical pulses can induce excitation of targeted neural pathways that aid in the treatment of neural disorders or dysfunction of the central and peripheral nervous system. In this review, we summarize the recent trends in the field of electrical stimulation for therapeutic interventions of nervous system disorders, such as for the restoration of brain, eye, ear, spinal cord, nerve and muscle function. Neural prosthetic applications are discussed, and functional electrical stimulation parameters for treating such disorders are reviewed. Important considerations for implantable packaging and enhancing device reliability are also discussed. Neural stimulators are expected to play a profound role in implantable neural devices that treat disorders and help restore functions in injured or disabled nervous system.
Collapse
|