1
|
Pargeter J, Cebeiro A, Levy SB. Stone toolmaking energy expenditure differs between novice and expert toolmakers. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25026. [PMID: 39288016 DOI: 10.1002/ajpa.25026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVES This study investigates the energetic costs associated with Oldowan-style flake production and how skill differences influence these costs. MATERIALS AND METHODS Nine adult participants, including novice and expert toolmakers, underwent a 2-h experimental session where we measured energy expenditure and flaking outcomes. We measured body mass (kg), percent body fat, and fat-free mass (kg) and used open-circuit indirect calorimetry to quantify energy expenditure. The lithic analysis used standard linear and mass measurements on the resulting cores and flakes. Qualitative observations from the video recordings provide insight into the subject's body positions and hand grips. RESULTS Results reveal significant differences in energy expenditure between novice and expert toolmakers, with experts demonstrating lower overall energy expenditure. Additionally, experts produced more flakes, reduced greater core mass per unit of energy expenditure, and exhibited distinct body positions, hand grips, and core/flake morphologies compared with novices. DISCUSSION The study provides novel insights into the bio-cultural impacts of stone toolmaking skill acquisition, suggesting that skilled performance reduces the metabolic costs of stone tool production. These findings contribute to debates surrounding the origins of human cultural capacities and highlight the importance of including energy expenditure measures in knapping experiments. Moreover, the results suggest that the presence or absence of expertise in the Paleolithic would have fundamentally altered selective pressures and the reliability of skill reproduction. This study enhances our understanding of differences in stone toolmaking skill and their implications for human energy allocation strategies during early technological evolution.
Collapse
Affiliation(s)
- Justin Pargeter
- Department of Anthropology, New York University, New York, USA
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
| | - Adela Cebeiro
- Department of Anthropology, New York University, New York, USA
| | - Stephanie B Levy
- Department of Anthropology, CUNY Hunter College, New York, USA
- New York Consortium in Evolutionary Primatology, New York, USA
| |
Collapse
|
2
|
Bruner E. Cognitive archaeology, and the psychological assessment of extinct minds. J Comp Neurol 2024; 532:e25583. [PMID: 38289186 DOI: 10.1002/cne.25583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Evolutionary anthropology relies on both neontological and paleontological information. In the latter case, fields such as paleoneurology, neuroarchaeology, and cognitive archaeology are supplying new perspectives in prehistory and neuroscience. Cognitive archaeology, in particular, investigates the behaviors associated with extinct species or cultures according to specific psychological models. For example, changes in working memory, attention, or visuospatial integration can be postulated when related behavioral changes are described in the archaeological record. However, cognition is a process based on different and partially independent functional elements, and extinct species could hence have evolved distinct combinations of cognitive abilities or features, based on both quantitative and qualitative differences. Accordingly, differences in working memory can lead to more conceptual or more holistic mindsets, with important changes in the perception and management of the mental experience. The parietal cortex is particularly interesting, in this sense, being involved in functions associated with body-tool integration, attention, and visual imaging. In some cases, evolutionary mismatches among these elements can induce drawbacks that, despite their positive effects on natural selection, can introduce important constraints in our own mental skills. Beyond the theoretical background, some hypotheses can be tested following methods in experimental psychology. In any case, theories in cognitive evolution must acknowledge that, beyond the brain and its biology, the human mind is also deeply rooted in body perception, in social networks, and in technological extension.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
- Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Bruner E. Cognitive Archeology and the Attentional System: An Evolutionary Mismatch for the Genus Homo. J Intell 2023; 11:183. [PMID: 37754912 PMCID: PMC10532831 DOI: 10.3390/jintelligence11090183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Brain evolution is a key topic in evolutionary anthropology. Unfortunately, in this sense the fossil record can usually support limited anatomical and behavioral inferences. Nonetheless, information from fossil species is, in any case, particularly valuable, because it represents the only direct proof of cerebral and behavioral changes throughout the human phylogeny. Recently, archeology and psychology have been integrated in the field of cognitive archeology, which aims to interpret current cognitive models according to the evidence we have on extinct human species. In this article, such evidence is reviewed in order to consider whether and to what extent the archeological record can supply information regarding changes of the attentional system in different taxa of the human genus. In particular, behavioral correlates associated with the fronto-parietal system and working memory are employed to consider recent changes in our species, Homo sapiens, and a mismatch between attentional and visuospatial ability is hypothesized. These two functional systems support present-moment awareness and mind-wandering, respectively, and their evolutionary unbalance can explain a structural sensitivity to psychological distress in our species.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Paseo Sierra de Atapuerca 3, 09002 Burgos, Spain
| |
Collapse
|
4
|
Bruner E, Beaudet A. The brain of Homo habilis: Three decades of paleoneurology. J Hum Evol 2023; 174:103281. [PMID: 36455402 DOI: 10.1016/j.jhevol.2022.103281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
In 1987, Phillip Tobias published a comprehensive anatomical analysis of the endocasts attributed to Homo habilis, discussing issues dealing with brain size, sulcal patterns, and vascular traces. He suggested that the neuroanatomy of this species evidenced a clear change toward many cerebral traits associated with our genus, mostly when concerning the morphology of the frontal and parietal cortex. After more than 30 years, the fossil record associated with this taxon has not grown that much, but we have much more information on cranial and brain biology, and we are using a larger array of digital methods to investigate the paleoneurological variation observed in the human genus. Brain volume, the size of the frontal lobe, or the gross hemispheric asymmetries are still relevant issues, but they are considered to be less central than before. More attention is instead being paid to the cortical organization, the relationships with the cranial architecture, and the influence of molecular or ecological factors. Although the field of paleoneurology can currently count on a larger range of tools and principles, there is still a general lack of anatomical information on many endocranial traits. This aspect is probably crucial for the agenda of paleoneurology. More importantly, the whole science is undergoing a delicate change, because of the growing influence of the social environment. In this sense, the disciplines working with fossils (and, in particular, with brain evolution) should take particular care to maintain a healthy professional situation, avoiding an excess of speculation and overstatement.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Paseo Sierra de Atapuerca 3, 09002 Burgos, Spain.
| | - Amélie Beaudet
- University of Cambridge, Henry Wellcome Building, Fitzwilliam St, Cambridge CB2 1QH, UK; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Carrer de l'Escola Industrial, 23, 08201 Sabadell, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
5
|
Can a Neandertal meditate? An evolutionary view of attention as a core component of general intelligence. INTELLIGENCE 2022. [DOI: 10.1016/j.intell.2022.101668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Silva-Gago M, Ioannidou F, Fedato A, Hodgson T, Bruner E. Visual Attention and Cognitive Archaeology: An Eye-Tracking Study of Palaeolithic Stone Tools. Perception 2021; 51:3-24. [PMID: 34967251 DOI: 10.1177/03010066211069504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The study of lithic technology can provide information on human cultural evolution. This article aims to analyse visual behaviour associated with the exploration of ancient stone artefacts and how this relates to perceptual mechanisms in humans. In Experiment 1, we used eye tracking to record patterns of eye fixations while participants viewed images of stone tools, including examples of worked pebbles and handaxes. The results showed that the focus of gaze was directed more towards the upper regions of worked pebbles and on the basal areas for handaxes. Knapped surfaces also attracted more fixation than natural cortex for both tool types. Fixation distribution was different to that predicted by models that calculate visual salience. Experiment 2 was an online study using a mouse-click attention tracking technique and included images of unworked pebbles and 'mixed' images combining the handaxe's outline with the pebble's unworked texture. The pattern of clicks corresponded to that revealed using eye tracking and there were differences between tools and other images. Overall, the findings suggest that visual exploration is directed towards functional aspects of tools. Studies of visual attention and exploration can supply useful information to inform understanding of human cognitive evolution and tool use.
Collapse
Affiliation(s)
- María Silva-Gago
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | | | - Annapaola Fedato
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - Timothy Hodgson
- College of Social Science, 4547University of Lincoln, Lincoln, UK
| | - Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
7
|
Silva-Gago M, Fedato A, Terradillos-Bernal M, Alonso-Alcalde R, Martín-Guerra E, Bruner E. Not a matter of shape: The influence of tool characteristics on electrodermal activity in response to haptic exploration of Lower Palaeolithic tools. Am J Hum Biol 2021; 34:e23612. [PMID: 34000102 DOI: 10.1002/ajhb.23612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Haptics involves somatosensory perception through the skin surface and dynamic touch based on the proprioceptive response of the whole body. Handling Palaeolithic stone tools influences the arousal and attentional engagement, which can be detected and measured through electrodermal activity. Although tool shape has generally been studied to consider tool functions or tool making, it is also a major factor in tool sensing and haptic perception. The purpose of this survey is to analyze whether the electrodermal reactions are influenced by stone tool morphology. METHODS We first quantify the morphological variability of 72 stone tools through geometric morphometrics. Then, 12 stone tools from the previous sample were randomly selected to perform the electrodermal analysis in a sample of 46 right-handed adults. RESULTS Elongation is the main factor involved in Lower Palaeolithic shape variation, followed by the position of the maximum thickness. Attention and manipulation time are mainly influenced by tool size, while arousal mostly correlates with tool weight. Electrodermal activity is apparently not influenced by the overall tool shape. Tool size, weight, and base morphology are the variables that mainly trigger an electrodermal reaction. CONCLUSIONS Electrophysiological reaction is more sensitive to specific physical features of the tool than to its general outline. These features are not particularly different in worked pebbles and handaxes in terms of grasping, but underwent remarkable changes in other technological traditions. That changes associated with behavioral performances can be employed in cognitive archaeology to investigate the relationships between tool sensing and tool use.
Collapse
Affiliation(s)
- María Silva-Gago
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - Annapaola Fedato
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | | | - Rodrigo Alonso-Alcalde
- Museo de la Evolución Humana, Burgos, Spain.,Área de Prehistoria, Universidad de Burgos, Burgos, Spain
| | - Elena Martín-Guerra
- Sociograph Marketing Science Consulting, Plaza Campus Universitario 1, Valladolid, Spain
| | - Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
8
|
Malafouris L. Mark Making and Human Becoming. JOURNAL OF ARCHAEOLOGICAL METHOD AND THEORY 2021; 28:95-119. [PMID: 33679120 PMCID: PMC7889684 DOI: 10.1007/s10816-020-09504-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 05/03/2023]
Abstract
This is a paper about mark making and human becoming. I will be asking what do marks do? How do they signify? What role do marks play in human becoming and the evolution of human intelligence? These questions cannot be pursued effectively from the perspective of any single discipline or ontology. Nonetheless, they are questions that archaeology has a great deal to contribute. They are also important questions, if not the least because evidence of early mark making constitutes the favoured archaeological mark of the 'cognitive' (in the 'modern' representational sense of the word). In this paper I want to argue that the archaeological predilection to see mark making as a potential index of symbolic representation often blind us to other, more basic dimensions of the cognitive life and agency of those marks as material signs. Drawing on enactive cognitive science and Material Engagement Theory I will show that early markings, such as the famous engravings from Blombos cave, are above all the products of kinesthetic dynamics of a non-representational sort that allow humans to engage and discover the semiotic affordances of mark making opening up new possibilities of enactive material signification. I will also indicate some common pitfalls in the way archaeology thinks about the 'cognitive' that needs overcome.
Collapse
|
9
|
A metric survey on the sagittal and coronal morphology of the precuneus in adult humans. Brain Struct Funct 2020; 225:2747-2755. [DOI: 10.1007/s00429-020-02152-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
|
10
|
Fedato A, Silva-Gago M, Terradillos-Bernal M, Alonso-Alcalde R, Martín-Guerra E, Bruner E. Hand morphometrics, electrodermal activity, and stone tools haptic perception. Am J Hum Biol 2019; 32:e23370. [PMID: 31837092 DOI: 10.1002/ajhb.23370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Tool use requires integration among sensorial, biomechanical, and cognitive factors. Taking into account the importance of tool use in human evolution, changes associated with the genus Homo are to be expected in all these three aspects. Haptics is based on both tactile and proprioceptive feedbacks, and it is associated with emotional reactions. Previous analyses have suggested a difference between males and females, and during haptic exploration of different typologies of stone tools. Here, we analyze the correlation between electrodermal reactions during stone tool handling and hand morphology to provide evidence of possible allometric factors shared by males and females. METHODS Electrodermal analysis was used to investigate some specific parameters involved in these reactions, such as changes in the level of attention and arousal. We analyzed the responses of 46 right-handed adults to 20 distinct stone tools while blindfolded. RESULTS Females have smaller hands and a wider range of electrodermal reactions. Within males and females, hand diameters and general hand size do not correlate with the degree of electrodermal level and response. CONCLUSIONS Sex differences in electrodemal reaction during stone tool handling are apparently not due to the effect of hand size or proportions. Differences between males and females are better interpreted as real sex differences, either due to a biological or cultural influences. Hand size does not influence the degree of arousal or attention during tool exploration, suggesting that other factors trigger individual reactions. These results add to a general cognitive approach on hand-tool evolution and tool sensing.
Collapse
Affiliation(s)
- Annapaola Fedato
- Programa de paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - María Silva-Gago
- Programa de paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | | | | | | | - Emiliano Bruner
- Programa de paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
11
|
Pargeter J, Khreisheh N, Stout D. Understanding stone tool-making skill acquisition: Experimental methods and evolutionary implications. J Hum Evol 2019; 133:146-166. [PMID: 31358178 DOI: 10.1016/j.jhevol.2019.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023]
Abstract
Despite its theoretical importance, the process of stone tool-making skill acquisition remains understudied and poorly understood. The challenges and costs of skill learning constitute an oft-neglected factor in the evaluation of alternative adaptive strategies and a potential source of bias in cultural transmission. Similarly, theory and data indicate that the most salient neural and cognitive demands of stone tool-making should occur during learning rather than expert performance. Unfortunately, the behavioral complexity and extensive learning requirements that make stone knapping skill acquisition an interesting object of study are the very features that make it so challenging to investigate experimentally. Here we present results from a multidisciplinary study of Late Acheulean handaxe-making skill acquisition involving twenty-six naïve participants and up to 90 hours training over several months, accompanied by a battery of psychometric, behavioral, and neuroimaging assessments. In this initial report, we derive a robust quantitative skill metric for the experimental handaxes using machine learning algorithms, reconstruct a group-level learning curve, and explore sources of individual variation in learning outcomes. Results identify particular cognitive targets of selection on the efficiency or reliability of tool-making skill acquisition, quantify learning costs, highlight the likely importance of social support, motivation, persistence, and self-control in knapping skill acquisition, and illustrate methods for reliably reconstructing ancient learning processes from archaeological evidence.
Collapse
Affiliation(s)
- Justin Pargeter
- Department of Anthropology, Emory University, Atlanta, GA, USA; Rock Art Research Institute, School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.
| | | | - Dietrich Stout
- Department of Anthropology, Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
Fedato A, Silva‐Gago M, Terradillos‐Bernal M, Alonso‐Alcalde R, Martín‐Guerra E, Bruner E. Electrodermal activity during Lower Paleolithic stone tool handling. Am J Hum Biol 2019; 31:e23279. [DOI: 10.1002/ajhb.23279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/09/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Annapaola Fedato
- Programa de PaleobiologíaCentro Nacional de Investigación sobre la Evolución Humana Burgos Spain
| | - María Silva‐Gago
- Programa de PaleobiologíaCentro Nacional de Investigación sobre la Evolución Humana Burgos Spain
| | - Marcos Terradillos‐Bernal
- Facultad de Humanidades y Ciencias SocialesUniversidad Internacional Isabel I de Castilla Burgos Spain
| | | | | | - Emiliano Bruner
- Programa de PaleobiologíaCentro Nacional de Investigación sobre la Evolución Humana Burgos Spain
| |
Collapse
|
13
|
Bruner E, Fedato A, Silva-Gago M, Alonso-Alcalde R, Terradillos-Bernal M, Fernández-Durantes MÁ, Martín-Guerra E. Visuospatial Integration and Hand-Tool Interaction in Cognitive Archaeology. Curr Top Behav Neurosci 2019; 41:13-36. [PMID: 30547431 DOI: 10.1007/7854_2018_71] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Testing cognitive hypotheses in extinct species can be challenging, but it can be done through the integration of independent sources of information (e.g., anatomy, archaeology, neurobiology, psychology), and validated with quantitative and experimental approaches. The parietal cortex has undergone changes and specializations in humans, probably in regions involved in visuospatial integration. Visual imagery and hand-eye coordination are crucial for a species with a remarkable technological and symbolic capacity. Hand-tool relationships are not only a matter of spatial planning but involve deeper cognitive levels that concern body cognition, self-awareness, and the ability to integrate tools into body schemes, extending the body's functional and structural range. Therefore, a co-evolution between body and technology is to be expected not only in terms of anatomical correspondence but also in terms of cognitive integration. In prehistory, lithic tools are crucial in the interpretation of the cognitive abilities of extinct human species. The shape of tools and the grasping patterns associated with the corresponding haptic experience can supply some basic quantitative approaches to evaluate changes in the archaeological record. At the physiological level, electrodermal activity can be used as proxy to investigate the cognitive response during haptic experiences, revealing differences between tools and between subjects. These approaches can be also useful to evaluate whether and to what extent our complex cognitive resources are based on the capacity to export and delegate functions to external technological components.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain.
| | - Annapaola Fedato
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - María Silva-Gago
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | | | | | | | | |
Collapse
|