1
|
Le Ciclé C, Cohen-Tannoudji J, L'Hôte D. Recent Advances in the Understanding of Gonadotrope Lineage Differentiation in the Developing Pituitary. Neuroendocrinology 2024:1-16. [PMID: 39527929 DOI: 10.1159/000542513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The pituitary gland is a vital endocrine organ regulating body homoeostasis through six hormone-secreting cell types. Among these, pituitary gonadotrope cells are essential for reproductive function. Throughout pituitary ontogenesis, gonadotrope cells differentiate in a stepwise process, involving both morphogenic cues and transcription factors, which drives specification of progenitor cells into specialised endocrine cells. It is crucial to understand the mechanisms underlying gonadotrope differentiation, as developmental defects and abnormalities in this process can lead to many reproductive pathologies. SUMMARY This review offers a detailed overview of the latest advances in gonadotrope cell differentiation. We addressed this question with a specific focus on three important aspects of gonadotrope differentiation: the identification of the progenitor population giving rise to gonadotrope cells, the early mechanisms that initiate Nr5a1 expression and thus gonadotrope fate commitment, and finally, the mechanisms driving the formation of physical and functional gonadotrope networks. KEY MESSAGES Overall, this review aimed to provide new insights into three aspects of the gonadotrope differentiation process by reconsidering pioneering studies in the light of data gained from latest technological developments. Firstly, we re-investigated the long debated developmental trajectory of pituitary gonadotrope cells. Secondly, we reported new regulatory mechanisms of Nr5a1 expression, focusing on the involvement of ERα. Finally, we highlighted the molecular and cellular mechanisms driving gonadotrope network formation during embryogenesis, a process that seems essential for regulation of gonadotrope activity.
Collapse
Affiliation(s)
- Charles Le Ciclé
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Joëlle Cohen-Tannoudji
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - David L'Hôte
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| |
Collapse
|
2
|
Khetchoumian K, Sochodolsky K, Lafont C, Gouhier A, Bemmo A, Kherdjemil Y, Kmita M, Le Tissier P, Mollard P, Christian H, Drouin J. Paracrine FGF1 signaling directs pituitary architecture and size. Proc Natl Acad Sci U S A 2024; 121:e2410269121. [PMID: 39320918 PMCID: PMC11459159 DOI: 10.1073/pnas.2410269121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Organ architecture is established during development through intricate cell-cell communication mechanisms, yet the specific signals mediating these communications often remain elusive. Here, we used the anterior pituitary gland that harbors different interdigitated hormone-secreting homotypic cell networks to dissect cell-cell communication mechanisms operating during late development. We show that blocking differentiation of corticotrope cells leads to pituitary hypoplasia with a major effect on somatotrope cells that directly contact corticotropes. Gene knockout of the corticotrope-restricted transcription factor Tpit results in fewer somatotropes, with less secretory granules and a loss of cell polarity, resulting in systemic growth retardation. Single-cell transcriptomic analyses identified FGF1 as a corticotrope-specific Tpit dosage-dependent target gene responsible for these phenotypes. Consistently, genetic ablation of FGF1 in mice phenocopies pituitary hypoplasia and growth impairment observed in Tpit-deficient mice. These findings reveal FGF1 produced by the corticotrope cell network as an essential paracrine signaling molecule participating in pituitary architecture and size.
Collapse
Affiliation(s)
- Konstantin Khetchoumian
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| | - Kevin Sochodolsky
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| | - Chrystel Lafont
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, MontpellierF-34094, France
- BioCampus Montpellier, University of Montpellier, CNRS, INSERM, MontpellierF-34094, France
| | - Arthur Gouhier
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| | - Amandine Bemmo
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| | - Yacine Kherdjemil
- Disease Modeling and Genome Editing platform, Institut de recherches cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| | - Marie Kmita
- Laboratoire de recherche en génétique et développement, Institut de recherches cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| | - Paul Le Tissier
- Centre for Integrative Physiology, University of Edinburgh, EdinburghEH8 9XD, United Kingdom
| | - Patrice Mollard
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, MontpellierF-34094, France
- BioCampus Montpellier, University of Montpellier, CNRS, INSERM, MontpellierF-34094, France
| | - Helen Christian
- Department of Physiology, Anatomy and Genetics, Oxford University, OxfordOX1 3QX, United Kingdom
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| |
Collapse
|
3
|
Zou H, Wang P, Zhang J. Role of microRNAs in pituitary gonadotrope cells. Gen Comp Endocrinol 2024; 355:114557. [PMID: 38797341 DOI: 10.1016/j.ygcen.2024.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The gonadotrope cells within the pituitary control vital processes of reproduction by producing follicle stimulating hormone (FSH) and luteinizing hormone (LH). Both external stimuli and internal regulatory factors contribute to the regulation of gonadotrope development and function. In recent years, growing evidences indicate that microRNAs (miRNAs), which regulate gene expression post-transcriptionally, play critical roles in multiple processes of gonadotrope development and function, including the syntheses of α or β subunits of FSH and LH, the secretion of LH, the regulation of GnRH signaling, and the maintenance of gonadotrope cell kinetics. Here, we review recent advances of miRNAs' expression, functions and mechanisms approached by using miRNA knockout mouse models, in silico analysis and the in vitro cultures of primary pituitary cells and gonadotrope-derived cell lines. By summarizing and discussing different roles of miRNAs in gonadotropes, this minireview helps to gain insights into the complex molecular network in gonadotropes and reproduction.
Collapse
Affiliation(s)
- He Zou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Peimin Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jinglin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Banik J, Moreira ARS, Lim J, Tomlinson S, Hardy LL, Lagasse A, Haney A, Crimmins MR, Boehm U, Odle AK, MacNicol MC, Childs GV, MacNicol AM. The Musashi RNA binding proteins direct the translational activation of key pituitary mRNAs. Sci Rep 2024; 14:5918. [PMID: 38467682 PMCID: PMC10928108 DOI: 10.1038/s41598-024-56002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
The pituitary functions as a master endocrine gland that secretes hormones critical for regulation of a wide variety of physiological processes including reproduction, growth, metabolism and stress responses. The distinct hormone-producing cell lineages within the pituitary display remarkable levels of cell plasticity that allow remodeling of the relative proportions of each hormone-producing cell population to meet organismal demands. The molecular mechanisms governing pituitary cell plasticity have not been fully elucidated. Our recent studies have implicated a role for the Musashi family of sequence-specific mRNA binding proteins in the control of pituitary hormone production, pituitary responses to hypothalamic stimulation and modulation of pituitary transcription factor expression in response to leptin signaling. To date, these actions of Musashi in the pituitary appear to be mediated through translational repression of the target mRNAs. Here, we report Musashi1 directs the translational activation, rather than repression, of the Prop1, Gata2 and Nr5a1 mRNAs which encode key pituitary lineage specification factors. We observe that Musashi1 further directs the translational activation of the mRNA encoding the glycolipid Neuronatin (Nnat) as determined both in mRNA reporter assays as well as in vivo. Our findings suggest a complex bifunctional role for Musashi1 in the control of pituitary cell function.
Collapse
Affiliation(s)
- Jewel Banik
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Ana Rita Silva Moreira
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Juchan Lim
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Sophia Tomlinson
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Linda L Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Alex Lagasse
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Meghan R Crimmins
- Arkansas Children's Nutrition Center, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA.
| |
Collapse
|
5
|
Laporte E, Hermans F, De Vriendt S, Vennekens A, Lambrechts D, Nys C, Cox B, Vankelecom H. Decoding the activated stem cell phenotype of the neonatally maturing pituitary. eLife 2022; 11:75742. [PMID: 35699412 PMCID: PMC9333987 DOI: 10.7554/elife.75742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
The pituitary represents the endocrine master regulator. In mouse, the gland undergoes active maturation immediately after birth. Here, we in detail portrayed the stem cell compartment of neonatal pituitary. Single-cell RNA-sequencing pictured an active gland, revealing proliferative stem as well as hormonal (progenitor) cell populations. The stem cell pool displayed a hybrid epithelial/mesenchymal phenotype, characteristic of development-involved tissue stem cells. Organoid culturing recapitulated the stem cells’ phenotype, interestingly also reproducing their paracrine activity. The pituitary stem cell-activating interleukin-6 advanced organoid growth, although the neonatal stem cell compartment was not visibly affected in Il6−/− mice, likely due to cytokine family redundancy. Further transcriptomic analysis exposed a pronounced WNT pathway in the neonatal gland, shown to be involved in stem cell activation and to overlap with the (fetal) human pituitary transcriptome. Following local damage, the neonatal gland efficiently regenerates, despite absence of additional stem cell proliferation, or upregulated IL-6 or WNT expression, all in line with the already high stem cell activation status, thereby exposing striking differences with adult pituitary. Together, our study decodes the stem cell compartment of neonatal pituitary, exposing an activated state in the maturing gland. Understanding stem cell activation is key to potential pituitary regenerative prospects. The pituitary gland is a pea-sized structure found just below the brain that produces hormones controlling everything from growth and stress to reproduction and immunity. To perform its role, the pituitary gland needs specialised hormone-producing cells, but it also contains stem cells. These stem cells can divide to produce more cells like themselves, or differentiate into cells of different types, including hormone-producing cells. In mice, the stem cells of the pituitary gland appear to be activated in the first few weeks after birth, and later become ‘quiescent’ (or lazy) in the adult pituitary gland. However, it remains unclear how the activated state found in the maturing gland is established and regulated. To answer this question, Laporte et al. used single-cell RNA sequencing, a technique that allows researchers to profile which genes are active in individual cells, which can provide vital information about the state and activity of a tissue. The researchers compared the cells of the maturing pituitary gland of newborn mice to the cells in the established gland of adult mice. This analysis revealed that the maturing pituitary gland is a dynamic tissue, with populations of cells that are actively dividing (including the stem cells), which the mature pituitary gland lacks. Additionally, Laporte et al. established the molecular basis for the activated state of the stem cells in the maturing pituitary gland, which relies on the activation of a cell signalling pathway called WNT. To confirm these findings, Laporte et al. used an organoid system that allowed them to recapitulate the stem cell compartment of the maturing pituitary gland in a dish. When Laporte et al. blocked WNT signalling in these organoids, the organoids failed to form or divide. Furthermore, blocking the pathway directly in newborn mice reduced the number of dividing stem cells in the pituitary gland. Both findings support the notion that WNT signalling is required to establish the activated state of the maturing pituitary gland in newborn mice. Laporte et al. also wanted to know whether the newborn pituitary gland responded to injury differently than the adult gland. It had already been established that the adult pituitary stem cells become activated upon injury, and that the gland has some regenerative capacity. However, when Laporte et al. injured the newborn pituitary gland, the gland was able to fully regenerate, despite the stem cells not becoming more activated. This is likely because these cells are already activated (or ‘primed’), and do not require further activation to divide and repair the gland with the help of other proliferating cells. With these results, Laporte et al. shed light on the activated state of the stem cells in the pituitary gland of newborn mice. This provides insight into the role of these stem cells, as well as unveiling possible routes towards regenerating pituitary tissue. This could eventually prove useful in medicine, in cases when the pituitary gland is damaged or removed.
Collapse
Affiliation(s)
- Emma Laporte
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Florian Hermans
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Silke De Vriendt
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | | | - Charlotte Nys
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Benoit Cox
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Hugo Vankelecom
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Ruf-Zamojski F, Zhang Z, Zamojski M, Smith GR, Mendelev N, Liu H, Nudelman G, Moriwaki M, Pincas H, Castanon RG, Nair VD, Seenarine N, Amper MAS, Zhou X, Ongaro L, Toufaily C, Schang G, Nery JR, Bartlett A, Aldridge A, Jain N, Childs GV, Troyanskaya OG, Ecker JR, Turgeon JL, Welt CK, Bernard DJ, Sealfon SC. Single nucleus multi-omics regulatory landscape of the murine pituitary. Nat Commun 2021; 12:2677. [PMID: 33976139 PMCID: PMC8113460 DOI: 10.1038/s41467-021-22859-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 03/16/2021] [Indexed: 11/12/2022] Open
Abstract
To provide a multi-omics resource and investigate transcriptional regulatory mechanisms, we profile the transcriptome, chromatin accessibility, and methylation status of over 70,000 single nuclei (sn) from adult mouse pituitaries. Paired snRNAseq and snATACseq datasets from individual animals highlight a continuum between developmental epigenetically-encoded cell types and transcriptionally-determined transient cell states. Co-accessibility analysis-based identification of a putative Fshb cis-regulatory domain that overlaps the fertility-linked rs11031006 human polymorphism, followed by experimental validation illustrate the use of this resource for hypothesis generation. We also identify transcriptional and chromatin accessibility programs distinguishing each major cell type. Regulons, which are co-regulated gene sets sharing binding sites for a common transcription factor driver, recapitulate cell type clustering. We identify both cell type-specific and sex-specific regulons that are highly correlated with promoter accessibility, but not with methylation state, supporting the centrality of chromatin accessibility in shaping cell-defining transcriptional programs. The sn multi-omics atlas is accessible at snpituitaryatlas.princeton.edu.
Collapse
Affiliation(s)
- Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA.
| | - Zidong Zhang
- Lewis-Sigler Institute for Integrative Genomics, and Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA
| | - Michel Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Natalia Mendelev
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - German Nudelman
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Mika Moriwaki
- Division of Endocrinology and Metabolism, University of Utah, Salt Lake City, UT, USA
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Rosa Gomez Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Nitish Seenarine
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Mary Anne S Amper
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Xiang Zhou
- Dept. of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Luisina Ongaro
- Dept. of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Chirine Toufaily
- Dept. of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Gauthier Schang
- Dept. of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew Aldridge
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nimisha Jain
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Gwen V Childs
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Olga G Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, and Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Judith L Turgeon
- Department of Internal Medicine, University of California, Davis, CA, USA
| | - Corrine K Welt
- Division of Endocrinology and Metabolism, University of Utah, Salt Lake City, UT, USA
| | - Daniel J Bernard
- Dept. of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA.
| |
Collapse
|
7
|
Bjelobaba I, Janjic MM, Prévide RM, Abebe D, Kucka M, Stojilkovic SS. Distinct Expression Patterns of Osteopontin and Dentin Matrix Protein 1 Genes in Pituitary Gonadotrophs. Front Endocrinol (Lausanne) 2019; 10:248. [PMID: 31057484 PMCID: PMC6478748 DOI: 10.3389/fendo.2019.00248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 01/06/2023] Open
Abstract
Cell-matrix interactions play important roles in pituitary development, physiology, and pathogenesis. In other tissues, a family of non-collagenous proteins, termed SIBLINGs, are known to contribute to cell-matrix interactions. Anterior pituitary gland expresses two SIBLING genes, Dmp1 (dentin matrix protein-1) and Spp1 (secreted phosphoprotein-1) encoding DMP1 and osteopontin proteins, respectively, but their expression pattern and roles in pituitary functions have not been clarified. Here we provide novel evidence supporting the conclusion that Spp1/osteopontin, like Dmp1/DMP1, are expressed in gonadotrophs in a sex- and age-specific manner. Other anterior pituitary cell types do not express these genes. In contrast to Dmp1, Spp1 expression is higher in males; in females, the expression reaches the peak during the diestrus phase of estrous cycle. In further contrast to Dmp1 and marker genes for gonadotrophs, the expression of Spp1 is not regulated by gonadotropin-releasing hormone in vivo and in vitro. However, Spp1 expression increases progressively after pituitary cell dispersion in both female and male cultures. We may speculate that gonadotrophs signal to other pituitary cell types about changes in the structure of pituitary cell-matrix network by osteopontin, a function consistent with the role of this secretory protein in postnatal tissue remodeling, extracellular matrix reorganization after injury, and tumorigenesis.
Collapse
Affiliation(s)
- Ivana Bjelobaba
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Marija M. Janjic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Rafael Maso Prévide
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Marek Kucka
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Stanko S. Stojilkovic
| |
Collapse
|