1
|
Xiao K, Pang MF, Zhao YQ, Gao LP, Wu YZ, Wang Y, Shi Q, Dong XP. Difference of geographic distributions of the Chinese patients with prion diseases in the permanent resident places and referring places. Prion 2022; 16:58-65. [PMID: 35638100 PMCID: PMC9176242 DOI: 10.1080/19336896.2022.2080921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human prion diseases (PrDs) are a group of transmissible neurodegenerative diseases that can be clarified as sporadic, genetic and iatrogenic forms. In this study, we have analysed the time and geographic distributions of 2011 PrD cases diagnosed by China National Surveillance for Creutzfeldt-Jakob disease (CNS-CJD) since 2006, including 1792 sporadic CJD (sCJD) cases and 219 gPrD cases. Apparently, the cases numbers of both sCJD and gPrD increased along with the surveillance years, showing a stepping up every five years. The geographic distributions of the PrDs cases based on the permanent residences were wide, distributing in 30 out of 31 provincial-level administrative divisions in Chinese mainland. However, the case numbers in the provincial level varied largely. The provinces in the eastern part of China had much more cases than those in the western part. Normalized the case numbers with the total population each province revealed higher incidences in six provinces. Further, the resident and referring places of all PrD cases were analysed, illustrating a clear concentrating pattern of referring in the large metropolises. Five provincial-level administrative divisions reported more PrD cases from other provinces than the local ones. Particularly, BJ reported not only more than one-fourth of all PrDs cases in Chinese mainland but also 3.64-fold more PrDs cases from other provinces than its local ones. We believed that good medical resources, well-trained programmes and knowledge of PrDs in the clinicians and the CDC staffs contributed to well-referring PrD cases in those large cities.
Collapse
Affiliation(s)
- Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, Shanghai, China
| | - Ming-Fan Pang
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing, Shanghai, China
| | - Yue-Qiao Zhao
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing, Shanghai, China
| | - Li-Ping Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, Shanghai, China
| | - Yue-Zhang Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, Shanghai, China
| | - Yuan Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, Shanghai, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, Shanghai, China.,China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, Shanghai, China.,Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing, Shanghai, China.,China Academy of Chinese Medical Sciences, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.,Shanghai Institute of Infectious Disease and Biosafety, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Murray SJ, Mitchell NL. The Translational Benefits of Sheep as Large Animal Models of Human Neurological Disorders. Front Vet Sci 2022; 9:831838. [PMID: 35242840 PMCID: PMC8886239 DOI: 10.3389/fvets.2022.831838] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
The past two decades have seen a considerable rise in the use of sheep to model human neurological disorders. While each animal model has its merits, sheep have many advantages over small animal models when it comes to studies on the brain. In particular, sheep have brains more comparable in size and structure to the human brain. They also have much longer life spans and are docile animals, making them useful for a wide range of in vivo studies. Sheep are amenable to regular blood and cerebrospinal fluid sampling which aids in biomarker discovery and monitoring of treatment efficacy. Several neurological diseases have been found to occur naturally in sheep, however sheep can also be genetically engineered or experimentally manipulated to recapitulate disease or injury. Many of these types of sheep models are currently being used for pre-clinical therapeutic trials, particularly gene therapy, with studies from several models culminating in potential treatments moving into clinical trials. This review will provide an overview of the benefits of using sheep to model neurological conditions, and highlight naturally occurring and experimentally induced sheep models that have demonstrated translational validity.
Collapse
Affiliation(s)
- Samantha J. Murray
- Faculty of Agriculture and Life Sciences, Lincoln University, Canterbury, New Zealand
| | | |
Collapse
|
3
|
Salamat MKF, Blanco ARA, McCutcheon S, Tan KBC, Stewart P, Brown H, Smith A, de Wolf C, Groschup MH, Becher D, Andréoletti O, Turner M, Manson JC, Houston EF. Preclinical transmission of prions by blood transfusion is influenced by donor genotype and route of infection. PLoS Pathog 2021; 17:e1009276. [PMID: 33600501 PMCID: PMC7891701 DOI: 10.1371/journal.ppat.1009276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Variant Creutzfeldt-Jakob disease (vCJD) is a human prion disease resulting from zoonotic transmission of bovine spongiform encephalopathy (BSE). Documented cases of vCJD transmission by blood transfusion necessitate on-going risk reduction measures to protect blood supplies, such as leucodepletion (removal of white blood cells, WBCs). This study set out to determine the risks of prion transmission by transfusion of labile blood components (red blood cells, platelets, plasma) commonly used in human medicine, and the effectiveness of leucodepletion in preventing infection, using BSE-infected sheep as a model. All components were capable of transmitting prion disease when donors were in the preclinical phase of infection, with the highest rates of infection in recipients of whole blood and buffy coat, and the lowest in recipients of plasma. Leucodepletion of components (<106 WBCs/unit) resulted in significantly lower transmission rates, but did not completely prevent transmission by any component. Donor PRNP genotype at codon 141, which is associated with variation in incubation period, also had a significant effect on transfusion transmission rates. A sensitive protein misfolding cyclic amplification (PMCA) assay, applied to longitudinal series of blood samples, identified infected sheep from 4 months post infection. However, in donor sheep (orally infected), the onset of detection of PrPSc in blood was much more variable, and generally later, compared to recipients (intravenous infection). This shows that the route and method of infection may profoundly affect the period during which an individual is infectious, and the test sensitivity required for reliable preclinical diagnosis, both of which have important implications for disease control. Our results emphasize that blood transfusion can be a highly efficient route of transmission for prion diseases. Given current uncertainties over the prevalence of asymptomatic vCJD carriers, this argues for the maintenance and improvement of current measures to reduce the risk of transmission by blood products. Variant Creutzfeldt-Jakob disease (vCJD) resulted from zoonotic transmission of bovine spongiform encephalopathy (BSE), and has also been transmitted by blood transfusion. One of the most important risk reduction measures introduced by human transfusion services to safeguard the blood supply is leucodepletion (removal of white blood cells) of blood components. This study represents the largest experimental analysis to date of the risks of prion infection associated with transfusion of labile blood components, and the effectiveness of leucodepletion in preventing transmission. Using a BSE-infected sheep model, we found that red blood cells, platelets and plasma from preclinical donors were all infectious, even after leucodepletion, although leucodepletion significantly reduced transmission rates. In addition, the time course of detection of prions in blood varied significantly depending on the route and method of infection. This has important implications for the risk of onward transmission, and suggests that further improvements in sensitivity of diagnostic tests will be required for reliable preclinical diagnosis of vCJD and other prion diseases. The results of this study support the continuation of current measures to reduce the risk of vCJD transmission by blood products, and suggest areas for further improvement.
Collapse
Affiliation(s)
- M. Khalid F. Salamat
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - A. Richard Alejo Blanco
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Sandra McCutcheon
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Kyle B. C. Tan
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Paula Stewart
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Helen Brown
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Allister Smith
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Christopher de Wolf
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald, Germany
| | | | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Marc Turner
- Scottish National Blood Transfusion Service (SNBTS), The Jack Copland Centre, Edinburgh, United Kingdom
| | - Jean C. Manson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - E. Fiona Houston
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Badrfam R, Noorbala AA, Vahabi Z, Zandifar A. Creutzfeldt-Jakob Disease after Dental Procedure along with the Initial Manifestations of Psychiatric Disorder: A Case Report. IRANIAN JOURNAL OF PSYCHIATRY 2021; 16:106-110. [PMID: 34054989 PMCID: PMC8140296 DOI: 10.18502/ijps.v16i1.5385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Introduction: Creutzfeldt-Jakob disease (CJD) as a prion disease is an untreatable type of progressive neurodegenerative encephalopathy. Although no definitive case has been reported yet, here we report a case that given the history, course of symptoms, and recent dental practice, it is highly probable that it was caused by dental procedures. Case Report: The patient was a 52-year-old woman who has had memory problems gradually with forgetting the names of family members since 6 weeks prior to the visit and shortly after the dental procedure. She experienced progressive visual hallucinations accompanied by a sharp decline in cognitive, verbal, and motor abilities in just a few weeks. Finally, the diagnosis of Creutzfeldt-Jakob was made for her based on the clinical history and typical brain MRI. Discussion: Clinical evidence of this patient, along with positive brain MRI results, indicates the risk of prion transfer through dental procedures. Paying attention to the neurological aspects of psychiatric manifestations and increasing the awareness of dentists about how to deal with and act on the potential dangers of prion transfer is of paramount importance.
Collapse
Affiliation(s)
- Rahim Badrfam
- Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Noorbala
- Psychosomatic Ward, Department of Psychiatry, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Vahabi
- Memory and Behavioral Neurology Division, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Zandifar
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
5
|
Nonno R, Di Bari MA, Pirisinu L, D'Agostino C, Vanni I, Chiappini B, Marcon S, Riccardi G, Tran L, Vikøren T, Våge J, Madslien K, Mitchell G, Telling GC, Benestad SL, Agrimi U. Studies in bank voles reveal strain differences between chronic wasting disease prions from Norway and North America. Proc Natl Acad Sci U S A 2020; 117:31417-31426. [PMID: 33229531 PMCID: PMC7733848 DOI: 10.1073/pnas.2013237117] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic wasting disease (CWD) is a relentless epidemic disorder caused by infectious prions that threatens the survival of cervid populations and raises increasing public health concerns in North America. In Europe, CWD was detected for the first time in wild Norwegian reindeer (Rangifer tarandus) and moose (Alces alces) in 2016. In this study, we aimed at comparing the strain properties of CWD prions derived from different cervid species in Norway and North America. Using a classical strain typing approach involving transmission and adaptation to bank voles (Myodes glareolus), we found that prions causing CWD in Norway induced incubation times, neuropathology, regional deposition of misfolded prion protein aggregates in the brain, and size of their protease-resistant core, different from those that characterize North American CWD. These findings show that CWD prion strains affecting Norwegian cervids are distinct from those found in North America, implying that the highly contagious North American CWD prions are not the proximate cause of the newly discovered Norwegian CWD cases. In addition, Norwegian CWD isolates showed an unexpected strain variability, with reindeer and moose being caused by different CWD strains. Our findings shed light on the origin of emergent European CWD, have significant implications for understanding the nature and the ecology of CWD in Europe, and highlight the need to assess the zoonotic potential of the new CWD strains detected in Europe.
Collapse
Affiliation(s)
- Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Michele A Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Claudia D'Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Barbara Chiappini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Stefano Marcon
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Geraldina Riccardi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Linh Tran
- World Organization for Animal Health Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, N-0106 Oslo, Norway
| | - Turid Vikøren
- World Organization for Animal Health Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, N-0106 Oslo, Norway
| | - Jørn Våge
- World Organization for Animal Health Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, N-0106 Oslo, Norway
| | - Knut Madslien
- World Organization for Animal Health Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, N-0106 Oslo, Norway
| | - Gordon Mitchell
- National and World Organization for Animal Health Reference Laboratory for Scrapie and Chronic Wasting Disease, Canadian Food Inspection Agency, Ottawa, ON K2H 8P9, Canada
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80525
| | - Sylvie L Benestad
- World Organization for Animal Health Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, N-0106 Oslo, Norway
| | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
6
|
Ward A, Hollister JR, McNally K, Ritchie DL, Zanusso G, Priola SA. Transmission characteristics of heterozygous cases of Creutzfeldt-Jakob disease with variable abnormal prion protein allotypes. Acta Neuropathol Commun 2020; 8:83. [PMID: 32517816 PMCID: PMC7285538 DOI: 10.1186/s40478-020-00958-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
In the human prion disease Creutzfeldt-Jakob disease (CJD), different CJD neuropathological subtypes are defined by the presence in normal prion protein (PrPC) of a methionine or valine at residue 129, by the molecular mass of the infectious prion protein PrPSc, by the pattern of PrPSc deposition, and by the distribution of spongiform change in the brain. Heterozygous cases of CJD potentially add another layer of complexity to defining CJD subtypes since PrPSc can have either a methionine (PrPSc-M129) or valine (PrPSc-V129) at residue 129. We have recently demonstrated that the relative amount of PrPSc-M129 versus PrPSc-V129, i.e. the PrPSc allotype ratio, varies between heterozygous CJD cases. In order to determine if differences in PrPSc allotype correlated with different disease phenotypes, we have inoculated 10 cases of heterozygous CJD (7 sporadic and 3 iatrogenic) into two transgenic mouse lines overexpressing PrPC with a methionine at codon 129. In one case, brain-region specific differences in PrPSc allotype appeared to correlate with differences in prion disease transmission and phenotype. In the other 9 cases inoculated, the presence of PrPSc-V129 was associated with plaque formation but differences in PrPSc allotype did not consistently correlate with disease incubation time or neuropathology. Thus, while the PrPSc allotype ratio may contribute to diverse prion phenotypes within a single brain, it does not appear to be a primary determinative factor of disease phenotype.
Collapse
|
7
|
Abdulrahman BA, Tahir W, Doh-Ura K, Gilch S, Schatzl HM. Combining autophagy stimulators and cellulose ethers for therapy against prion disease. Prion 2020; 13:185-196. [PMID: 31578923 PMCID: PMC6779372 DOI: 10.1080/19336896.2019.1670928] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders that affect animals and humans. Prions are proteinaceous infectious particles consisting of a misfolded isoform of the cellular prion protein PrPC, termed PrPSc. PrPSc accumulates in infected neurons due to partial resistance to proteolytic digestion. Using compounds that interfere with the production of PrPSc or enhance its degradation cure prion infection in vitro, but most drugs failed when used to treat prion-infected rodents. In order to synergize the effect of anti-prion drugs, we combined drugs interfering with the generation of PrPSc with compounds inducing PrPSc degradation. Here, we tested autophagy stimulators (rapamycin or AR12) and cellulose ether compounds (TC-5RW or 60SH-50) either as single or combination treatment of mice infected with RML prions. Single drug treatments significantly extended the survival compared to the untreated group. As anticipated, also all the combination therapy groups showed extended survival compared to the untreated group, but no combination treatment showed superior effects to 60SH-50 or TC-5RW treatment alone. Unexpectedly, we later found that combining autophagy stimulator and cellulose ether treatment in cultured neuronal cells mitigated the pro-autophagic activity of AR12 and rapamycin, which can in part explain the in vivo results. Overall, we show that it is critical to exclude antagonizing drug effects when attempting combination therapy. In addition, we identified AR-12 as a pro-autophagic drug that significantly extends survival of prion-infected mice, has no adverse side effects on the animals used in this study, and can be useful in future studies.
Collapse
Affiliation(s)
- Basant A Abdulrahman
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University , Cairo , Egypt
| | - Waqas Tahir
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada
| | - Hermann M Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
8
|
Fuchigami T, Kawasaki M, Koyama R, Nakaie M, Nakagaki T, Sano K, Atarashi R, Yoshida S, Haratake M, Ono M, Nishida N, Nakayama M. Development of Radioiodinated Benzofuran Derivatives for in Vivo Imaging of Prion Deposits in the Brain. ACS Infect Dis 2019; 5:2003-2013. [PMID: 30875466 DOI: 10.1021/acsinfecdis.8b00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Prion diseases are fatal neurodegenerative disorders associated with the deposition of abnormal prion protein aggregates (PrPSc) in the brain tissue. Here, we report the development of 125I-labeled iodobenzofuran (IBF) derivatives as single photon emission computed tomography (SPECT) imaging probes to detect cerebral PrPSc deposits. We synthesized and radioiodinated several 5-IBF and 6-IBF derivatives. The IBF derivatives were evaluated as prion imaging probes using recombinant mouse prion protein (rMoPrP) aggregates and brain sections of mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice. Although all the IBF derivatives were strongly adsorbed on the rMoPrP aggregates, [125I]5-IBF-NHMe displayed the highest adsorption rate and potent binding affinity with an equilibrium dissociation constant (Kd) of 12.3 nM. Fluorescence imaging using IBF-NHMe showed clear signals of the PrPSc-positive amyloid deposits in the mBSE-infected mouse brains. Biodistribution studies in normal mice demonstrated slow uptake and clearance from the brain of 125I-IBF derivatives. Among the derivatives, [125I]6-IBF-NH2 showed the highest peak brain uptake [2.59% injected dose (ID)/g at 10 min] and good clearance (0.51% ID/g at 180 min). Although the brain distribution of IBF derivatives should still be optimized for in vivo imaging, these compounds showed prospective binding properties to PrPSc. Further chemical modification of these IBF derivatives may contribute to the discovery of clinically applicable prion imaging probes.
Collapse
Affiliation(s)
- Takeshi Fuchigami
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masao Kawasaki
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Ryusuke Koyama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mari Nakaie
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kazunori Sano
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Ryuichiro Atarashi
- Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Sakura Yoshida
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mamoru Haratake
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Masahiro Ono
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Morio Nakayama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
9
|
Altered distribution, aggregation, and protease resistance of cellular prion protein following intracranial inoculation. PLoS One 2019; 14:e0219457. [PMID: 31291644 PMCID: PMC6620108 DOI: 10.1371/journal.pone.0219457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/24/2019] [Indexed: 11/19/2022] Open
Abstract
Prion protein (PrPC) is a protease-sensitive and soluble cell surface glycoprotein expressed in almost all mammalian cell types. PrPSc, a protease-resistant and insoluble form of PrPC, is the causative agent of prion diseases, fatal and transmissible neurogenerative diseases of mammals. Prion infection is initiated via either ingestion or inoculation of PrPSc or when host PrPC stochastically refolds into PrPSc. In either instance, the early events that occur during prion infection remain poorly understood. We have used transgenic mice expressing mouse PrPC tagged with a unique antibody epitope to monitor the response of host PrPC to prion inoculation. Following intracranial inoculation of either prion-infected or uninfected brain homogenate, we show that host PrPC can accumulate both intra-axonally and within the myelin membrane of axons suggesting that it may play a role in axonal loss following brain injury. Moreover, in response to the inoculation host PrPC exhibits an increased insolubility and protease resistance similar to that of PrPSc, even in the absence of infectious prions. Thus, our results raise the possibility that damage to the brain may be one trigger by which PrPC stochastically refolds into pathogenic PrPSc leading to productive prion infection.
Collapse
|
10
|
Groveman BR, Foliaki ST, Orru CD, Zanusso G, Carroll JA, Race B, Haigh CL. Sporadic Creutzfeldt-Jakob disease prion infection of human cerebral organoids. Acta Neuropathol Commun 2019; 7:90. [PMID: 31196223 PMCID: PMC6567389 DOI: 10.1186/s40478-019-0742-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022] Open
Abstract
For the transmissible, neurogenerative family of prion diseases, few human models of infection exist and none represent structured neuronal tissue. Human cerebral organoids are self-organizing, three-dimensional brain tissues that can be grown from induced pluripotent stem cells. Organoids can model aspects of neurodegeneration in Alzheimer's Disease and Down's Syndrome, reproducing tau hyperphosphorylation and amyloid plaque pathology. To determine whether organoids could be used to reproduce human prion infection and pathogenesis, we inoculated organoids with two sporadic Creutzfeldt-Jakob Disease prion subtypes. Organoids showed uptake, followed by clearance, of the infectious inoculum. Subsequent re-emergence of prion self-seeding activity indicated de novo propagation. Organoid health assays, prion titer, prion protein electrophoretic mobility and immunohistochemistry demonstrated inoculum-specific differences. Our study shows, for the first time, that cerebral organoids can model aspects of human prion disease and thus offer a powerful system for investigating different human prion subtype pathologies and testing putative therapeutics.
Collapse
|
11
|
Sanchez-Garcia J, Fernandez-Funez P. D159 and S167 are protective residues in the prion protein from dog and horse, two prion-resistant animals. Neurobiol Dis 2018; 119:1-12. [PMID: 30010001 PMCID: PMC6139044 DOI: 10.1016/j.nbd.2018.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 06/07/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022] Open
Abstract
Prion diseases are fatal neurodegenerative diseases caused by misfolding of the prion protein (PrP). These conditions affect humans and animals, including endemic forms in sheep and deer. Bovine, rodents, and many zoo mammals also developed prion diseases during the "mad-cow" epidemic in the 1980's. Interestingly, rabbits, horses, and dogs show unusual resistance to prion diseases, suggesting that specific sequence changes in the corresponding endogenous PrP prevents the accumulation of pathogenic conformations. In vitro misfolding assays and structural studies have identified S174, S167, and D159 as the key residues mediating the stability of rabbit, horse, and dog PrP, respectively. Here, we expressed the WT forms of rabbit, horse, and dog PrP in transgenic Drosophila and found that none of them is toxic. Replacing these key residues with the corresponding amino acids in hamster PrP showed that mutant horse (S167D) and dog (D159N) PrP are highly toxic, whereas mutant rabbit (S174 N) PrP is not. These results confirm the impact of S167 and D159 in local and long-range structural features in the globular domain of PrP that increase its stability, while suggesting the role of additional residues in the stability of rabbit PrP. Identifying these protective amino acids and the structural features that stabilize PrP can contribute to advance the field towards the development of therapies that halt or reverse the devastating effects of prion diseases.
Collapse
Affiliation(s)
- Jonatan Sanchez-Garcia
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA.
| |
Collapse
|