1
|
Nachiappan KR, Sadasivam B, Najmi A, K C. Evaluation of the Anxiolytic Effect of Ramelteon in Various Rat Models of Anxiety. Cureus 2023; 15:e38717. [PMID: 37292541 PMCID: PMC10246733 DOI: 10.7759/cureus.38717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Background Melatonin was found to have anxiolytic properties in several animal and human studies. The melatonin receptor agonist ramelteon might also have a similar anxiolytic action. Objectives The objective of the study was to evaluate the effect of ramelteon in various rat models of anxiety and to explore the possible mechanism of action. Methods The anxiolytic effect was compared between the control group, diazepam group (1 mg/kg and 0.5 mg/kg), and ramelteon group (0.25 mg/kg, 0.5 mg/kg, and 1 mg/kg) by an elevated plus maze, light-dark box, hole board apparatus, and open field test in Sprague Dawley rats. Antagonists flumazenil, picrotoxin, and Luzindole were used to explore the possible mechanism of action of ramelteon if it showed an anxiolytic property. Results Ramelteon as a standalone drug did not show an anxiolytic effect. However, a combination of ramelteon (1 mg/kg) and diazepam (0.5 mg/kg) showed an anxiolytic effect. Conclusion Further studies can evaluate the use of a fixed-dose combination of ramelteon and already-approved anxiolytic drugs to reduce the dose of the latter.
Collapse
Affiliation(s)
- K R Nachiappan
- Pharmacology, Employees' State Insurance Corporation (ESIC) Medical College & Post Graduate Institute of Medical Science and Research (PGIMSR) Model Hospital, Bangalore, IND
| | | | - Ahmad Najmi
- Pharmacology, All India Institute of Medical Sciences (AIIMS) Bhopal, Bhopal, IND
| | - Chandrahasan K
- Pharmacology, Andaman and Nicobar Institute of Medical Sciences, Port Blair, IND
| |
Collapse
|
2
|
Repova K, Baka T, Krajcirovicova K, Stanko P, Aziriova S, Reiter RJ, Simko F. Melatonin as a Potential Approach to Anxiety Treatment. Int J Mol Sci 2022; 23:ijms232416187. [PMID: 36555831 PMCID: PMC9788115 DOI: 10.3390/ijms232416187] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Anxiety disorders are the most common mental diseases. Anxiety and the associated physical symptoms may disturb social and occupational life and increase the risk of somatic diseases. The pathophysiology of anxiety development is complex and involves alterations in stress hormone production, neurosignaling pathways or free radical production. The various manifestations of anxiety, its complex pathophysiological background and the side effects of available treatments underlie the quest for constantly seeking therapies for these conditions. Melatonin, an indolamine produced in the pineal gland and released into the blood on a nightly basis, has been demonstrated to exert anxiolytic action in animal experiments and different clinical conditions. This hormone influences a number of physiological actions either via specific melatonin receptors or by receptor-independent pleiotropic effects. The underlying pathomechanism of melatonin's benefit in anxiety may reside in its sympatholytic action, interaction with the renin-angiotensin and glucocorticoid systems, modulation of interneuronal signaling and its extraordinary antioxidant and radical scavenging nature. Of importance, the concentration of this indolamine is significantly higher in cerebrospinal fluid than in the blood. Thus, ensuring sufficient melatonin production by reducing light pollution, which suppresses melatonin levels, may represent an endogenous neuroprotective and anxiolytic treatment. Since melatonin is freely available, economically undemanding and has limited side effects, it may be considered an additional or alternative treatment for various conditions associated with anxiety.
Collapse
Affiliation(s)
- Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-(0)2-59357276
| |
Collapse
|
3
|
Essential Oils and Melatonin as Functional Ingredients in Dogs. Animals (Basel) 2022; 12:ani12162089. [PMID: 36009679 PMCID: PMC9405278 DOI: 10.3390/ani12162089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Phytogenics are plant-based compounds with beneficial actions in feed technology and/or animal health. These so-called plant secondary metabolites are very diverse and with wide possible applications in humans and animals. Among them, essential oils (EOs) are the most used in feed for livestock and pets. Lately, melatonin has acquired new and interesting applications in dogs. Recent studies using EOs and/or melatonin in dog feeding and their involvement in health aspects are presented. Abstract The use of nutraceuticals or functional ingredients is increasingly widespread in human food; their use is also widespread in animal feed. These natural compounds generally come from plant materials and comprise a wide range of substances of a very diverse chemical nature. In animals, these compounds, so-called phytogenics, are used to obtain improvements in feed production/stability and also as functional components with repercussions on animal health. Along with polyphenols, isoprenoid compounds represent a family of substances with wide applications in therapy and pet nutrition. Essential oils (EOs) are a group of complex substances with fat-soluble nature that are widely used. Melatonin is an indolic amine present in all living with amphiphilic nature. In this work, we present a review of the most relevant phytogenics (polyphenol, isoprenoid, and alkaloid compounds), their characteristics, and possible uses as nutraceuticals in dogs, with special emphasis on EOs and their regulatory aspects, applied in foods and topically. Additionally, a presentation of the importance of the use of melatonin in dogs is developed, giving physiological and practical aspects about its use in dog feeding and also in topical application, with examples and future projections. This review points to the combination of EOs and melatonin in food supplements and in the topical application as an innovative product and shows excellent perspectives aimed at addressing dysfunctions in pets, such as the treatment of stress and anxiety, sleep disorders, alopecia, and hair growth problems, among others.
Collapse
|
4
|
Millan MJ. Agomelatine for the treatment of generalized anxiety disorder: focus on its distinctive mechanism of action. Ther Adv Psychopharmacol 2022; 12:20451253221105128. [PMID: 35795687 PMCID: PMC9251978 DOI: 10.1177/20451253221105128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Generalized anxiety disorder (GAD), the most frequently diagnosed form of anxiety, is usually treated by cognitive-behavioural approaches or medication; in particular, benzodiazepines (acutely) and serotonin or serotonin/noradrenaline reuptake inhibitors (long term). Efficacy, compliance, and acceptability are, however, far from ideal, reinforcing interest in alternative options. Agomelatine, clinically employed in the treatment of major depression, expresses anxiolytic properties in rodents and was effective in the treatment of GAD (including severely ill patients) in several double-blind, short-term (12 weeks) and relapse-prevention (6 months) studies. At active doses, the incidence of adverse effects was no higher than for placebo. Agomelatine possesses a unique binding profile, behaving as a melatonin (MT1/MT2) receptor agonist and 5-HT2C receptor antagonist, yet recognizing neither monoamine transporters nor GABAA receptors. Extensive evidence supports a role for 5-HT2C receptors in the induction of anxious states, and their blockade likely plays a primary role in mediating the anxiolytic actions of agomelatine, including populations in the amygdala and bed nucleus of stria terminalis, as well as the hippocampus. Recruitment of MT receptors in the suprachiasmatic nucleus, thalamic reticular nucleus, and hippocampus appears to fulfil a complimentary role. Downstream of 5-HT2C and MT receptors, modulation of stress-sensitive glutamatergic circuits and altered release of the anxiogenic neuropeptides, corticotrophin-releasing factor, and vasopressin, may be implicated in the actions of agomelatine. To summarize, agomelatine exerts its anxiolytic actions by mechanisms clearly distinct from those of other agents currently employed for the management of GAD. PLAIN LANGUAGE SUMMARY How agomelatine helps in the treatment of anxiety disorders. INTRODUCTION • Anxiety disorders have a significant negative impact on quality of life.• The most common type of anxiety disorder, called generalized anxiety disorder (GAD), is associated with nervousness and excessive worry.• These symptoms can lead to additional symptoms like tiredness, sleeplessness, irritability, and poor attention.• GAD is generally treated through either cognitive-behavioural therapy or medication. However, widely used drugs like benzodiazepines and serotonin reuptake inhibitors have adverse effects.• Agomelatine, a well-established antidepressant drug, has shown anxiety-lowering ('anxiolytic') properties in rats and has been shown to effectively treat GAD with minimal side effects.• However, exactly how it acts on the brain to manage GAD is not yet clear.• Thus, this review aims to shed light on agomelatine's mechanism of action in treating GAD. METHODS • The authors reviewed studies on how agomelatine treats anxiety in animals.• They also looked at clinical studies on the effects of agomelatine in people with GAD. RESULTS • The study showed that agomelatine 'blocks' a receptor in nerve cells, which plays a role in causing anxiety, called the 5-HT2C receptor.• Blocking this receptor, especially in specific brain regions such as nerve cells of the amygdala, bed nucleus of stria terminalis, and hippocampus, produced the anxiety reduction seen during agomelatine treatment.• Agomelatine also activates the melatonin (MT) receptor, which is known to keep anxiety in check, promote sleep, and maintain the sleep cycle.• Agomelatine should thus tackle sleep disturbances commonly seen in patients with GAD.• Beyond 5-HT2C and MT receptors, signalling molecules in nerve cells that are known to be involved in anxiety disorders (called 'neurotransmitters' and 'neuropeptides') are also affected by agomelatine. CONCLUSION • Agomelatine's anxiolytic effects are caused by mechanisms that are distinct from those of other medications currently used to treat GAD.• This explains its therapeutic success and minimal adverse side effects.
Collapse
Affiliation(s)
- Mark J Millan
- Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Sciences, Glasgow University, 28 Hillhead Street, Glasgow G12 8QB, UK
| |
Collapse
|
5
|
Omeiza NA, Abdulrahim HA, Alagbonsi AI, Ezurike PU, Soluoku TK, Isiabor H, Alli-Oluwafuyi AA. Melatonin salvages lead-induced neuro-cognitive shutdown, anxiety, and depressive-like symptoms via oxido-inflammatory and cholinergic mechanisms. Brain Behav 2021; 11:e2227. [PMID: 34087957 PMCID: PMC8413791 DOI: 10.1002/brb3.2227] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Lead is the most used nonphysiological neurotoxic heavy metal in the world that has been indicated to interfere with the cognitive and noncognitive processes via numerous mechanisms. The neuroprotective effect of melatonin is well known, but the effect of its interaction with lead in the brain remains inconclusive. OBJECTIVE To assess the therapeutic role of melatonin on cognitive deficit, anxiety and depressive-like symptoms in matured male Wistar rats exposed to a subchronic lead chloride (PbCl2 ). METHODS Twenty male Wistar rats were blindly randomized into four groups (n = 5/group): group 1 to 4 underwent intragastric administration of physiological saline (10 ml/kg; vehicle), PbCl2 (50 mg/kg), melatonin (10 mg/kg) and PbCl2 + melatonin respectively for a period of 4 weeks during which neurobehavioral data were extracted, followed by neurochemical and histopathological evaluations. RESULTS Exposure to PbCl2 reduced cognitive performance by increasing the escape latency and average proximity to the platform zone border, decreasing average path length in the platform zone, cognitive score, and time spent in probing. It raised the thigmotaxis percentage, time spent in rearing, number of pellet-like feces, and time spent in the dark compartment of a bright/dark box which are predictors of anxiety. It also induced depressive-like behavior as immobility time was enhanced. PbCl2 deranged neurochemicals; malondialdehyde, interlukin-1β, and tumor necrotic factor-α were increased while superoxide dismutase and acetylcholinesterase were decreased without remarkable alteration in reduced glutathione and nitric oxide. Administration of PbCl2 further disrupted neuronal settings of hippocampal proper and dentate gyrus. In contrast, the supplementation of melatonin reversed all the neurological consequences of PbCl2 neurotoxicity by eliciting its properties against oxidative and nonoxidative action of PbCl2 . CONCLUSION These findings suggest that melatonin down-regulates neurotoxicant interplays in the brain systems. Therefore, this study suggests the use of melatonin as an adjuvant therapy in neuropathological disorders/dysfunctions.
Collapse
Affiliation(s)
- Noah A Omeiza
- Neuropharmacology and Toxicology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Halimat A Abdulrahim
- Department of Medical Biochemistry, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Abdullateef I Alagbonsi
- Department of Clinical Biology (Physiology), School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Southern Province, Republic of Rwanda
| | - Precious U Ezurike
- Neuropharmacology and Toxicology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Talha K Soluoku
- Department of Neuroscience, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Happy Isiabor
- Neuropharmacology and Toxicology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abdulmusawwir A Alli-Oluwafuyi
- Department of Pharmacology and Therapeutics, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| |
Collapse
|
6
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
7
|
Cohen H, Zohar J, Carmi L. Effects of agomelatine on behaviour, circadian expression of period 1 and period 2 clock genes and neuroplastic markers in the predator scent stress rat model of PTSD. World J Biol Psychiatry 2020; 21:255-273. [PMID: 30230406 DOI: 10.1080/15622975.2018.1523560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objectives: The therapeutic value of the antidepressant agomelatine in the aftermath of traumatic experience and early post-reminder has been questioned. Herein, agomelatine, its vehicle or melatonin agonist were administered either acutely 1 h post-stressor or repeatedly (7 days) after early post-reminder in a post-traumatic stress rat model (PSS) using the scent of predator urine.Methods: Behavioural responses, and brain molecular and morphological changes were evaluated after each treatment procedure in PSS-exposed and unexposed rats.Results: When administered immediately after PSS, agomelatine induced a significant reduction of anxiety-like behaviour as assessed in the elevated-plus-maze and acoustic startle response at 8 days post-administration. Concomitantly, agomelatine significantly decreased Per1/Per2 expression in the CA1/CA3 areas, suprachiasmatic nucleus and basolateral amygdala, thereby partially restoring genes expression overregulated by PSS. Agomelatine further significantly increased cell growth and facilitated dendritic growth and arbour in dentate gyrus (DG) granule and apical CA1 cells and upregulated brain-derived neurotrophic factor protein in the DG and cortex III versus vehicle. When administered early post-reminder over 7 days before testing, agomelatine was ineffective on behavioural responses pattern, molecular and morphological changes induced by PSS.Conclusions: These findings suggest that agomelatine may be a potential agent in the acute aftermath of traumatic stress exposure.
Collapse
Affiliation(s)
- Hagit Cohen
- Beer-Sheva Mental Health Center, The State of Israel Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Joseph Zohar
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Carmi
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Barbosa-Méndez S, Salazar-Juarez A. Melatonin does not produce sedation in rats: A chronobiological study. Chronobiol Int 2019; 37:353-374. [DOI: 10.1080/07420528.2019.1702554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Susana Barbosa-Méndez
- Molecular Neurobiology and Neurochemistry of Addiction, Ramón de la Fuente Muñiz National Institute of Psychiatry, Ciudad de México, México
| | - Alberto Salazar-Juarez
- Molecular Neurobiology and Neurochemistry of Addiction, Ramón de la Fuente Muñiz National Institute of Psychiatry, Ciudad de México, México
| |
Collapse
|