1
|
Katic L, Choi J, Diaz Saravia S, Silverman A, Nagourney A, Torelli V, Gupta S, Glavan M, Gulati A, Khurana S, Tsyvkin E. The Interplay Between Cardiovascular Disease and Lung Cancer. Cureus 2024; 16:e62953. [PMID: 39044884 PMCID: PMC11265258 DOI: 10.7759/cureus.62953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/25/2024] Open
Abstract
Cardiovascular disease (CVD) and lung cancer are among the leading causes of mortality worldwide, with a significant interplay that complicates patient management and treatment outcomes. This review explores the complex relationship between various forms of CVD - such as coronary artery disease, heart failure (HF), arrhythmias, and valvular heart disease - and lung cancer. Shared risk factors, including smoking, aging, and chronic inflammation, contribute to the co-occurrence of these conditions. Additionally, treatments for lung cancer, particularly chemotherapy and radiation therapy, can exacerbate CVD, necessitating a multidisciplinary approach to patient care. We delve into specific CVD-related impacts on lung cancer prognosis and vice versa, examining mechanisms, clinical outcomes, and management strategies. Our findings highlight the need for integrated care involving oncologists, cardiologists, and other healthcare providers to optimize treatment plans and improve patient outcomes. Emphasizing comprehensive cardiovascular risk management in lung cancer patients, we advocate for further research to deepen our understanding and develop novel therapeutic approaches, ultimately enhancing the quality of life and survival rates in patients suffering from both CVD and lung cancer.
Collapse
Affiliation(s)
- Luka Katic
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - James Choi
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sara Diaz Saravia
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | | | - Vincent Torelli
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Soumya Gupta
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Amit Gulati
- Cardiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sakshi Khurana
- Radiology, New York Presbyterian-Columbia University Irving Medical Center, New York, USA
| | - Elina Tsyvkin
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
2
|
Lin H, Wang J, Shi Q, Wu M. Significance of NKX2-1 as a biomarker for clinical prognosis, immune infiltration, and drug therapy in lung squamous cell carcinoma. PeerJ 2024; 12:e17338. [PMID: 38708353 PMCID: PMC11069361 DOI: 10.7717/peerj.17338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Background This study was performed to determine the biological processes in which NKX2-1 is involved and thus its role in the development of lung squamous cell carcinoma (LUSC) toward improving the prognosis and treatment of LUSC. Methods Raw RNA sequencing (RNA-seq) data of LUSC from The Cancer Genome Atlas (TCGA) were used in bioinformatics analysis to characterize NKX2-1 expression levels in tumor and normal tissues. Survival analysis of Kaplan-Meier curve, the time-dependent receiver operating characteristic (ROC) curve, and a nomogram were used to analyze the prognosis value of NKX2-1 for LUSC in terms of overall survival (OS) and progression-free survival (PFS). Then, differentially expressed genes (DEGs) were identified, and Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA) were used to clarify the biological mechanisms potentially involved in the development of LUSC. Moreover, the correlation between the NKX2-1 expression level and tumor mutation burden (TMB), tumor microenvironment (TME), and immune cell infiltration revealed that NKX2-1 participates in the development of LUSC. Finally, we studied the effects of NKX2-1 on drug therapy. To validate the protein and gene expression levels of NKX2-1 in LUSC, we employed immunohistochemistry(IHC) datasets, The Gene Expression Omnibus (GEO) database, and qRT-PCR analysis. Results NKX2-1 expression levels were significantly lower in LUSC than in normal lung tissue. It significantly differed in gender, stage and N classification. The survival analysis revealed that high expression of NKX2-1 had shorter OS and PFS in LUSC. The multivariate Cox regression hazard model showed the NKX2-1 expression as an independent prognostic factor. Then, the nomogram predicted LUSC prognosis. There are 51 upregulated DEGs and 49 downregulated DEGs in the NKX2-1 high-level groups. GO, KEGG and GSEA analysis revealed that DEGs were enriched in cell cycle and DNA replication.The TME results show that NKX2-1 expression was positively associated with mast cells resting, neutrophils, monocytes, T cells CD4 memory resting, and M2 macrophages but negatively associated with M1 macrophages. The TMB correlated negatively with NKX2-1 expression. The pharmacotherapy had great sensitivity in the NKX2-1 low-level group, the immunotherapy is no significant difference in the NKX2-1 low-level and high-level groups. The analysis of GEO data demonstrated concurrence with TCGA results. IHC revealed NKX2-1 protein expression in tumor tissues of both LUAD and LUSC. Meanwhile qRT-PCR analysis indicated a significantly lower NKX2-1 expression level in LUSC compared to LUAD. These qRT-PCR findings were consistent with co-expression analysis of NKX2-1. Conclusion We conclude that NKX2-1 is a potential biomarker for prognosis and treatment LUSC. A new insights of NKX2-1 in LUSC is still needed further research.
Collapse
Affiliation(s)
- Huiyue Lin
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juyong Wang
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minmin Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Ma T, Guo L, Yan H, Wang L. Cobind: quantitative analysis of the genomic overlaps. BIOINFORMATICS ADVANCES 2023; 3:vbad104. [PMID: 37600846 PMCID: PMC10438957 DOI: 10.1093/bioadv/vbad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
Motivation Analyzing the overlap between two sets of genomic intervals is a frequent task in the field of bioinformatics. Typically, this is accomplished by counting the number (or proportion) of overlapped regions, which applies an arbitrary threshold to determine if two genomic intervals are overlapped. By making binary calls but disregarding the magnitude of the overlap, such an approach often leads to biased, non-reproducible, and incomparable results. Results We developed the cobind package, which incorporates six statistical measures: the Jaccard coefficient, Sørensen-Dice coefficient, Szymkiewicz-Simpson coefficient, collocation coefficient, pointwise mutual information (PMI), and normalized PMI. These measures allow for a quantitative assessment of the collocation strength between two sets of genomic intervals. To demonstrate the effectiveness of these methods, we applied them to analyze CTCF's binding sites identified from ChIP-seq, cancer-specific open-chromatin regions (OCRs) identified from ATAC-seq of 17 cancer types, and oligodendrocytes-specific OCRs identified from scATAC-seq. Our results indicated that these new approaches effectively re-discover CTCF's cofactors, as well as cancer-specific and oligodendrocytes-specific master regulators implicated in disease and cell type development. Availability and implementation The cobind package is implemented in Python and freely available at https://cobind.readthedocs.io/en/latest/.
Collapse
Affiliation(s)
- Tao Ma
- Division of Computational Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| | - Lingyun Guo
- Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN 55455, United States
| | - Huihuang Yan
- Division of Computational Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| | - Liguo Wang
- Division of Computational Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota Rochester, Rochester, MN 55904, United States
| |
Collapse
|
4
|
The role of FOXP3 in non-small cell lung cancer and its therapeutic potentials. Pharmacol Ther 2023; 241:108333. [PMID: 36528259 DOI: 10.1016/j.pharmthera.2022.108333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Although in the last few decades we have witnessed the rapid development of treatments for non-small cell lung cancer (NSCLC), it still remains the leading cause of cancer-related death. Increasing efforts have been devoted to exploring potential biomarkers and molecular targets for NSCLC. Foxp3, a transcription factor that was discovered as a master regulator of regulatory T cells (Tregs), has been found to express abnormally in tumoral cells including lung cancer cells. In recent years, increasing evidence have surfaced, revealing the carcinogenic effect of FOXP3 in lung cancer. In this review, we analyzed and summarized the function of FOXP3, its regulation and therapeutic potentials in NSCLC, with a hope to facilitate the development of novel treatments for NSCLC.
Collapse
|
5
|
Tansathitaya V, Sarasin W, Phakham T, Sawaswong V, Chanchaem P, Payungporn S. Regulation of mi-RNAs Target Cancer Genes Between Exercise and Non-exercise in Rat Rheumatoid Arthritis Induction: Pilot Study. Epigenet Insights 2022; 15:25168657221110485. [PMID: 35800470 PMCID: PMC9253985 DOI: 10.1177/25168657221110485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/13/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction: Rheumatoid arthritis is associated with various cancers. Many studies have
investigated physical exercise interventions as health improvements to
ameliorate the risk of cancer during rheumatoid arthritis diagnosis.
Recently, microRNAs were used as biomarkers for health assessment and cancer
prediction in rheumatoid arthritis patients. Methods: The effects of exercise interventions on serum microRNAs were investigated in
pristane-induced arthritis (PIA) rat models. Twelve Sprague-Dawley male rats
were divided into 4 groups including non-exercise without PIA (N-EX),
non-exercise with PIA (N-EX + PIA), exercise without PIA (EX) and exercise
with PIA (EX + PIA). Blood samples were collected at the end of the study
period to analyze miRNA biomarkers and target cancer gene predictions. Results: Four significant Rattus norvegicus (rno-microRNAs) may purpose as tumor
suppressors were identified as potential target cancer gene candidate
expressions within the 4 comparative interventional exercise groups. One
rno-microRNA and target cancer gene candidate was up-regulated and 3
rno-microRNAs and their target cancer genes were down-regulated. Conclusions: Exercise interventions affected rno-miRNAs regulated target cancer gene
candidates ITPR3, SOCS6, ITGA6, and NKX2-1 as biomarkers for cancer
prognosis in rheumatoid arthritis diagnosis.
Collapse
Affiliation(s)
- Vimolmas Tansathitaya
- College of Sports Science and Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Witchana Sarasin
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapati Phakham
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Vorthon Sawaswong
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prangwalai Chanchaem
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Nakahama K, Kaneda H, Osawa M, Izumi M, Yoshimoto N, Sugimoto A, Nagamine H, Ogawa K, Matsumoto Y, Sawa K, Tani Y, Mitsuoka S, Watanabe T, Asai K, Kawaguchi T. Association of thyroid transcription factor-1 with the efficacy of immune-checkpoint inhibitors in patients with advanced lung adenocarcinoma. Thorac Cancer 2022; 13:2309-2317. [PMID: 35808895 PMCID: PMC9376174 DOI: 10.1111/1759-7714.14560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background We aimed to identify the relationship between thyroid transcription factor‐1 (TTF‐1) expression of lung adenocarcinoma and the efficacy of immune‐checkpoint inhibitor (ICI) therapy. Methods This retrospective multicenter study comprised patients with advanced lung adenocarcinoma treated with ICI monotherapy. We collected clinical medical records including data on TTF‐1 expression and analyzed the relationship between TTF‐1 expression and programmed death‐ligand 1 tumor proportion score (PD‐L1 TPS), objective response rate (ORR), progression‐free survival (PFS), and overall survival (OS). Results In total, 108 patients with lung adenocarcinoma were analyzed. The rate of TPS ≥1% and ≥50% in patients with positive TTF‐1 expression was significantly higher than that in patients with negative TTF‐1 expression (88% vs. 60%, p < 0.001; 65% vs. 24%, p < 0.001). The ORR was significantly higher in TTF‐1 positive patients than in TTF‐1‐negative patients (38% vs. 8%, p = 0.003). Among patients with TPS ≥50% and 1%–49%, the ORR in TTF‐1 positive and negative patients was 48% (26/54) versus 17% (1/6) (p = 0.21), and 32% (6/19) versus 11% (1/9) (p = 0.37), respectively. The ORR for patients with TPS <1% was 0% in both the TTF‐1 negative and positive cases. The median PFS and OS was significantly longer in TTF‐1‐positive patients than in TTF‐1‐negative patients (5.4 vs. 1.6 months, p < 0.001; 18.2 vs. 8.0 months, p = 0.041). Multivariate analysis revealed that TTF‐1‐negative status was an independent unfavorable prognostic factor for PFS. Conclusion Patients with TTF‐1‐positive status receiving ICI monotherapy showed better outcomes than those with TTF‐1‐negative lung adenocarcinoma.
Collapse
Affiliation(s)
- Kenji Nakahama
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiroyasu Kaneda
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masahiko Osawa
- Department of Diagnostic Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Motohiro Izumi
- Department of Pulmonary Medicine, Bell land General Hospital, Sakai, Japan
| | - Naoki Yoshimoto
- Department of Pulmonary Medicine, Ishikiriseiki Hospital, Higashiosaka, Japan
| | - Akira Sugimoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroaki Nagamine
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Koichi Ogawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshiya Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kenji Sawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoko Tani
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shigeki Mitsuoka
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tomoya Kawaguchi
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
7
|
Yang T, Li J, Zhuo Z, Zeng H, Tan T, Miao L, Zheng M, Yang J, Pan J, Hu C, Zou Y, He J, Xia H. TTF1 suppresses neuroblastoma growth and induces neuroblastoma differentiation by targeting TrkA and the miR-204/TrkB axis. iScience 2022; 25:104655. [PMID: 35811845 PMCID: PMC9263519 DOI: 10.1016/j.isci.2022.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/11/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial malignant solid tumor in children. We found that TTF1, TrkA, and miR-204 were lowly expressed, whereas TrkB was highly expressed in undifferentiated NB tissues. Meanwhile, TTF1 expression correlated positively with TrkA and miR-204 expression but negatively with TrkB expression. The TTF1 promoter was hypermethylated in undifferentiated NB tissues and SK-N-BE cells, leading to TTF1 downregulation. We also identified miR-204, which directly targets TrkB, as a transcriptional target of TTF1. Functionally, TTF1 suppressed proliferation, migration, and invasion of NB cells, whereas induced cell cycle arrest, apoptosis, and autophagy of NB cells by regulating TrkA and the miR-204-TrkB axis. Furthermore, TTF1 suppressed tumor growth and promoted neurogenic differentiation in a NB xenograft mouse model. Our study demonstrates that TTF1 reduces tumor growth and induces neurogenic differentiation in NB by directly targeting TrkA and the miR-204/TrkB axis. TTF1, TrkA, and miR-204 were lowly expressed in undifferentiated NB tissues TTF1 promoter was hypermethylated in undifferentiated NB tissues and cells TTF1 suppressed proliferation of NB cells by regulating TrkA and the miR-204-TrkB axis TTF1 suppressed tumor growth and promoted neurogenic differentiation in vivo
Collapse
|
8
|
Ito Y, Furuya F, Taki K, Suzuki H, Shimura H. NKX2-1 re-expression induces cell death through apoptosis and necrosis in dedifferentiated thyroid carcinoma cells. PLoS One 2021; 16:e0259558. [PMID: 34748583 PMCID: PMC8575255 DOI: 10.1371/journal.pone.0259558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 10/21/2021] [Indexed: 11/23/2022] Open
Abstract
NK2 homeobox 1 (NKX2-1) is a thyroid transcription factor essential for proper thyroid formation and maintaining its physiological function. In thyroid cancer, NKX2-1 expression decreases in parallel with declined differentiation. However, the molecular pathways and mechanisms connecting NKX2-1 to thyroid cancer phenotypes are largely unknown. This study aimed to examine the effects of NKX2-1 re-expression on dedifferentiated thyroid cancer cell death and explore the underlying mechanisms. A human papillary thyroid carcinoma cell line lacking NKX2-1 expression was infected with an adenoviral vector containing Nkx2-1. Cell viability decreased after Nkx2-1 transduction and apoptosis and necrosis were detected. Arginase 2 (ARG2), regulator of G protein signaling 4 (RGS4), and RGS5 mRNA expression was greatly increased in Nkx2-1-transducted cells. After suppressing these genes by siRNA, cell death, apoptosis, and necrosis decreased in RGS4 knockdown cells. These findings demonstrated that cell death was induced via apoptosis and necrosis by NKX2-1 re-expression and involves RGS4.
Collapse
Affiliation(s)
- Yuko Ito
- Department of Laboratory Medicine, School of Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Fumihiko Furuya
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Katsumi Taki
- Department of Internal Medicine, Fujiyoshida Municipal Medical Center, Fujiyoshida, Yamanashi, Japan
| | - Hideaki Suzuki
- Department of Laboratory Medicine, School of Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Hiroki Shimura
- Department of Laboratory Medicine, School of Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan
| |
Collapse
|
9
|
Thyroid Transcription Factor-1: Structure, Expression, Function and Its Relationship with Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9957209. [PMID: 34631891 PMCID: PMC8494563 DOI: 10.1155/2021/9957209] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023]
Abstract
Thyroid transcription factor-1 (TTF-1/NKx2.1) is a member of the NKx2 tissue-specific transcription factor family, which is expressed in thyroid follicle, parathyroid gland, alveolar epithelium, and diencephalon which originated from ectoderm, and participates in the differentiation, development, and functional maintenance of the above organs. Recent studies have shown that the abnormal expression of TTF-1 is closely related to the occurrence of a variety of human diseases and can be used as a potential new target for the diagnosis and treatment of related diseases. In this article, in order to strengthen the systematic understanding of TTF-1 and promote the progress of related research, we reviewed the structure, expression regulation, biological functions of TTF-1, and its role in the occurrence and development of human-related clinical diseases. Meanwhile, we prospect the future research direction of TTF-1, which might ultimately contribute to the understanding of the pathogenesis of related clinical diseases and the development of new prevention and treatment strategies.
Collapse
|
10
|
Connecting Cholesterol Efflux Factors to Lung Cancer Biology and Therapeutics. Int J Mol Sci 2021; 22:ijms22137209. [PMID: 34281263 PMCID: PMC8268178 DOI: 10.3390/ijms22137209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Cholesterol is a foundational molecule of biology. There is a long-standing interest in understanding how cholesterol metabolism is intertwined with cancer biology. In this review, we focus on the known connections between lung cancer and molecules mediating cholesterol efflux. A major take-home lesson is that the roles of many cholesterol efflux factors remain underexplored. It is our hope that this article would motivate others to investigate how cholesterol efflux factors contribute to lung cancer biology.
Collapse
|
11
|
Svaton M, Fiala O, Krakorova G, Blazek J, Hurdalkova K, Barinova M, Mukensnabl P, Pesek M. Thyroid transcription factor 1 and p63 expression is associated with survival outcome in patients with non-small cell lung cancer treated with erlotinib. Oncol Lett 2020; 20:1376-1382. [PMID: 32724380 PMCID: PMC7377161 DOI: 10.3892/ol.2020.11663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
While erlotinib is primarily administered to patients with non-small cell lung cancer with sensitizing epidermal growth factor receptor (EGFR) mutations, it is also prescribed to patients with wild type (wt) EGFR in higher lines of treatment. However, there is no predictive marker for erlotinib efficacy in patients with EGFR wt. Certain immunohistochemical (IHC) parameters, including thyroid transcription factor 1 (TTF1) and p63, have been reported to indicate predictive power in patients with EGFR wt. The present study focused on retrospective data from the University Hospital in Pilsen using the TULUNG register. TTF1 and p63 expression data were extracted from the hospital information system and merged with registry data to calculate progression-free survival (PFS) and overall survival (OS) rates. A cohort of 345 patients with adenocarcinoma (ADC) or squamous cell carcinoma (SCC) exhibited similar erlotinib efficacies when TTF1 and p63 were ignored. However, significant differences were reported in PFS and OS rates of a subgroup of 126 patients where TTF1 and p63 parameters were known. In a univariate analysis, group A (ADC TTF1+/p63-) achieved PFS of 2.6 months, group B (SSC TTF1-/p63+) 1.9 months and group C (did not fit into groups A or B, i.e., ADC TTF1-/p63+ or SCC TTF1+/p63-) 1.4 months (P=0.006). Median OS was 14.2, 19.1 and 5.3 months for A, B and C, respectively (P=0.002). Furthermore, a multivariate analysis demonstrated IHC markers to be the only significant parameters for PFS and OS. Group C had a negative prognostic factor for PFS [hazard ratio (HR), 1.812; P=0.02] and OS (HR=2.367; P=0.01). In conclusion, patients with EGFR wt and lung carcinomas without TTF1 and p63 expression typical for ADC (TTF1+/p633-) or SCC (TTF1-/p63+) do not appear to be suitable candidates for erlotinib treatment.
Collapse
Affiliation(s)
- Martin Svaton
- Department of Pneumology and Phthisiology, Faculty of Medicine in Pilsen, Charles University, 305 99 Pilsen, Czech Republic
| | - Ondrej Fiala
- Department of Oncology and Radiotherapy, Faculty of Medicine in Pilsen, Charles University, 305 99 Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 305 99 Pilsen, Czech Republic
| | - Gabriela Krakorova
- Department of Pneumology and Phthisiology, Faculty of Medicine in Pilsen, Charles University, 305 99 Pilsen, Czech Republic
| | - Jiri Blazek
- Department of Pneumology and Phthisiology, Faculty of Medicine in Pilsen, Charles University, 305 99 Pilsen, Czech Republic
| | | | - Magda Barinova
- Institute of Biostatistics and Analyses Ltd., 625 00 Brno, Czech Republic
| | - Petr Mukensnabl
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, 305 99 Pilsen, Czech Republic
| | - Milos Pesek
- Department of Pneumology and Phthisiology, Faculty of Medicine in Pilsen, Charles University, 305 99 Pilsen, Czech Republic
| |
Collapse
|
12
|
Puderecki M, Szumiło J, Marzec-Kotarska B. Novel prognostic molecular markers in lung cancer. Oncol Lett 2020; 20:9-18. [PMID: 32565929 DOI: 10.3892/ol.2020.11541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Lung carcinoma, especially in its most commonly diagnosed non-small cell histological form, is a challenge to diagnose and treat worldwide, due to the prognosis in patients with this type of cancer being poor and mortality rates being high. However, a number of patients with this type of lung carcinoma exhibit a longer than average overall survival. The specific molecular background of non-small-cell lung cancer that favors longer survival has not yet been determined. The aim of the current study was to review articles published in the years 2017-2018 and create a list of the most important and strongest non-conventional factors that could be used in the future assessment of the prognosis of patients with adenocarcinoma and squamous cell carcinoma of the lung who cannot undergo current targeted therapy. Analysis identified multiple prognostic factors in non-small cell lung carcinoma, including tumor mutational burden, which was revealed to be independent of the tumor stage or grade as well as other factors, including age, sex or targeted therapy effects. The selected molecular factors exhibit the potential to be used in the treatment of patients with specific problematic lung cancer, and may contribute to setting recommendations for the diagnosis, prognosis and treatment of individual patients with lung cancer.
Collapse
Affiliation(s)
- Michał Puderecki
- Department of Clinical Pathomorphology, The Medical University of Lublin, 20-090 Lublin, Poland
| | - Justyna Szumiło
- Department of Clinical Pathomorphology, The Medical University of Lublin, 20-090 Lublin, Poland
| | - Barbara Marzec-Kotarska
- Department of Clinical Pathomorphology, The Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
13
|
Chen Z, Li M, Ma K, Shang G, Liang J, Yin J, Luo J, Zhan C, Shi Y, Wang Q. Analysis of the clinicopathological characteristics, genetic phenotypes, and prognostic of pure mucinous adenocarcinoma. Cancer Med 2019; 9:517-529. [PMID: 31769218 PMCID: PMC6970056 DOI: 10.1002/cam4.2726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/15/2019] [Accepted: 11/09/2019] [Indexed: 12/25/2022] Open
Abstract
Background Primary pure mucinous adenocarcinoma of the lung (PMA) is a rare subtype. However, correlations between clinicopathological features and genetic phenotypes with survival have not been described comprehensively. Methods Pure mucinous adenocarcinoma patient information collected from the Surveillance, Epidemiology, and End Results (SEER) database, the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (FDZSH), and the Cancer Genome Atlas (TCGA) were extracted, evaluated, and compared with other lung adenocarcinomas (LUAD) patient data. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to explore the functional importance of underlying molecular changes. Overall survival (OS) was evaluated with the Kaplan‐Meier method. Univariate and multivariate analysis through Cox proportional hazard regression identified risk factors that predicted OS, and the results were used to construct a nomogram to predict OS for PMA patients. Results Overall, 3622 patients, 41 patients, and 15 patients with PMA were identified from the SEER, FDZSH, and TCGA databases, respectively. There were 345 differentially expressed genes, 30 differentially mutated genes and 72 differentially methylated genes were identified between PMA and other LUAD samples. In the SEER database, PMA had a better prognosis compared to other LUAD. Compared with patients with other LUAD, patients with PMA exhibited unique clinicopathological features, including fewer grade III/IV tumors, less pleural invasion, more early‐stage cancer, and more lower lobe carcinomas. Multivariate analyses showed that age, race, T stage, N stage, surgery, and chemotherapy were independent risk factors. The nomogram had a calibration index of 0.724. Conclusions Our research identified unique clinicopathological characteristics and genetic phenotypes for PMA and other LUAD. The nomogram accurately predicted OS.
Collapse
Affiliation(s)
- Zhencong Chen
- Department of Thoracic of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Li
- Department of Thoracic of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ke Ma
- Department of Thoracic of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoguo Shang
- Department of Pathology of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liang
- Department of Thoracic of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiacheng Yin
- Department of Thoracic of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jizhuang Luo
- Department of Thoracic of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Zhan
- Department of Thoracic of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Shi
- Department of Thoracic of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qun Wang
- Department of Thoracic of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Phelps CA, Lindsey-Boltz L, Sancar A, Mu D. Mechanistic Study of TTF-1 Modulation of Cellular Sensitivity to Cisplatin. Sci Rep 2019; 9:7990. [PMID: 31142791 PMCID: PMC6541604 DOI: 10.1038/s41598-019-44549-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/17/2019] [Indexed: 11/08/2022] Open
Abstract
The lung lineage master regulator gene, Thyroid Transcription Factor-1 (TTF-1, also known as NKX2-1), is used as a marker by pathologists to identify lung adenocarcinomas since TTF-1 is expressed in 60 ~ 70% of lung ADs. Much research has been conducted to investigate roles of TTF-1 in lung cancer biology. But, how it modulates cellular chemosensitivity remains poorly characterized. Our study shows that TTF-1 sensitizes the KRAS-mutated A549 and NCI-H460 lung cancer cells to cisplatin, a common chemotherapy used to treat lung cancer. This chemosensitization activity does not appear to be mediated by a TTF-1-imposed alteration on nucleotide excision repair. Mechanistically, TTF-1 induced a reduction in p-AKT (S473), which in turn activated glycogen synthase kinase 3 (GSK3) and reduced β-catenin. Intriguingly, in the EGFR-mutated NCI-H1975 and HCC827 cells, TTF-1 desensitized these cells to cisplatin; concomitantly, TTF-1 conferred an increase in p-AKT. Finally, the conditioned media of TTF-1-transefected cells sensitized TTF-1- cells to cisplatin, implicating that the TTF-1-driven chemosensitization activity may be dually pronged in both intracellular and extracellular compartments. In short, this study highlights the enigmatic activities of TTF-1 in lung cancer, and calls for future research to optimally manage chemotherapy of patients with TTF-1+ lung ADs.
Collapse
Affiliation(s)
- Cody A Phelps
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA, 22903, USA
| | - Laura Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - David Mu
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, 23501, USA.
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23501, USA.
| |
Collapse
|
15
|
Liu J, Dong S, Li L, Wang H, Zhao J, Zhao Y. The E3 ubiquitin ligase HECW1 targets thyroid transcription factor 1 (TTF1/NKX2.1) for its degradation in the ubiquitin-proteasome system. Cell Signal 2019; 58:91-98. [PMID: 30849519 DOI: 10.1016/j.cellsig.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
Abstract
Thyroid transcription factor 1 (TTF1/NKX2.1), is a nuclear protein member of the NKX2 family of homeodomain transcription factors. It plays a critical role in regulation of multiple organ functions by promoting gene expression, such as thyroid hormone in thyroid and surfactant proteins in the lung. However, molecular regulation of TTF1 has not been well investigated, especially regarding its protein degradation. Here we show that protein kinase C agonist, phorbol esters (PMA), reduces TTF1 protein levels in time- and dose-dependent manners, without altering TTF1 mRNA levels. TTF1 is ubiquitinated and degraded in the proteasome in response to PMA, suggesting that PMA induces TTF1 degradation in the ubiquitin-proteasome system. Furthermore, we demonstrate that an E3 ubiquitin ligase, named HECT, C2 and WW domain containing E3 ubiquitin protein ligase 1 (HECW1), targets TTF1 for its ubiquitination and degradation, while downregulation of HECW1 attenuates PMA-induced TTF1 ubiquitination and degradation. A lysine residue lys151 was identified as the ubiquitin acceptor site within the TTF1. A lys151 to arginine mutant of TTF1 (TTF1K151R) is resistant to PMA- or HECW1-mediated ubiquitination and degradation. Further, we reveal that overexpression of TTF1 increases lung epithelial cell migration and proliferation, while the effects are reversed by HECW1. This study is the first to demonstrate that the E3 ubiquitin ligase HECW1 regulates TTF1 degradation by site-specific ubiquitination. This study will provide a new direction to clarify the molecular regulation of TTF1 in lung and its role in lung epithelial remodeling after injury.
Collapse
Affiliation(s)
- Jia Liu
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, China; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Su Dong
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Lian Li
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Heather Wang
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|