1
|
Demuytere J, Ernst S, Ceelen W. Pathophysiology of Peritoneal Metastasis. J Surg Oncol 2024. [PMID: 39400354 DOI: 10.1002/jso.27890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024]
Abstract
Peritoneal metastasis is the result of a complex, stepwise process that involves multiple, spatially and temporally distinct interactions between the primary cancer, disseminated cancer cells or clusters, and the mesothelial lining of the peritoneal cavity and intraperitoneal organs. The biology of peritoneal metastasis, long a neglected field of research, is now increasingly being unraveled. Here, we provide an update on the mechanisms that drive the journey that eventually leads to widespread peritoneal metastatic disease.
Collapse
Affiliation(s)
- Jesse Demuytere
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sam Ernst
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
2
|
Demuytere J, Ernst S, van Ovost J, Cosyns S, Ceelen W. The tumor immune microenvironment in peritoneal carcinomatosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 371:63-95. [PMID: 35965001 DOI: 10.1016/bs.ircmb.2022.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One in four patients with colorectal cancer, 40% of gastric cancer patients, and 60% of ovarian cancer patients will develop peritoneal metastases (PM) in the course of their disease. The outcome of patients with widespread PM remains poor with currently available treatments. Despite the relatively common occurrence of PM, little is known on the pathophysiology that drives the peritoneal metastatic cascade. It is increasingly recognized that the stromal components of the peritoneal microenvironment play an essential role in tumor progression. However, little is known about the specific interactions and components of the peritoneal tumor microenvironment, particularly with respect the immune cell population. We summarize the current knowledge of the tumor immune microenvironment (TIME) in peritoneal metastases originating from the three most common origins: ovarian, gastric, and colorectal cancer. Clearly, the TIME is highly heterogeneous and its composition and functional activity differ according to tumor type and, within the same patient, according to anatomical location. The TIME in PM remains to be explored in detail, and further elucidation of their immune contexture may allow biology driven design of novel immune modulating or immune targeting therapies.
Collapse
Affiliation(s)
- Jesse Demuytere
- Experimental Surgery Lab, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sam Ernst
- Experimental Surgery Lab, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Judith van Ovost
- Experimental Surgery Lab, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah Cosyns
- Experimental Surgery Lab, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Wim Ceelen
- Experimental Surgery Lab, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
3
|
Ceelen W, Braet H, van Ramshorst G, Willaert W, Remaut K. Intraperitoneal chemotherapy for peritoneal metastases: an expert opinion. Expert Opin Drug Deliv 2020; 17:511-522. [PMID: 32142389 DOI: 10.1080/17425247.2020.1736551] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
Introduction: The rationale for intraperitoneal (IP) drug delivery for patients with peritoneal metastases (PM) is based on the pharmacokinetic advantage resulting from the peritoneal-plasma barrier, and on the potential to adequately treat small, poorly vascularized PM. Despite a history of more than three decades, many aspects of IP drug delivery remain poorly studied.Areas covered: We outline the anatomy and physiology of the peritoneal cavity, including the pharmacokinetics of IP drug delivery. We discuss transport mechanisms governing tissue penetration of IP chemotherapy, and how these are affected by the biomechanical properties of the tumor stroma. We provide an overview of the current clinical evidence on IP chemotherapy in ovarian, colorectal, and gastric cancer. We discuss the current limitations of IP drug delivery and propose several potential areas of progress.Expert opinion: The potential of IP drug delivery is hampered by off-label use of drugs developed for systemic therapy. The efficacy of IP chemotherapy for PM depends on cancer type, disease extent, and mode of drug delivery. Results from ongoing randomized trials will allow to better delineate the potential of IP chemotherapy. Promising approaches include IP aerosol therapy, prolonged delivery platforms such as gels or biomaterials, and the use of nanomedicine.
Collapse
Affiliation(s)
- Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Helena Braet
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | | | - Wouter Willaert
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Katrien Remaut
- Cancer Research Institute Ghent (CRIG), Belgium
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Lagast N, Carlier C, Ceelen WP. Pharmacokinetics and Tissue Transport of Intraperitoneal Chemotherapy. Surg Oncol Clin N Am 2018; 27:477-494. [PMID: 29935684 DOI: 10.1016/j.soc.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The presence of a peritoneal barrier results in a pharmacokinetic advantage associated with intraperitoneal (IP) delivery of anticancer drugs. The anticancer efficacy of IP chemotherapy depends, however, on its ability to penetrate the tumor stroma. Tumor tissue transport is governed by diffusion and convection and is affected by numerous physical, biological, and pharmaceutical variables. From preclinical and clinical studies, it appears that tissue penetration after IP chemotherapy delivery is very limited. Several approaches are studied in order to improve tissue penetration of small molecular and macromolecular anticancer drugs after IP instillation.
Collapse
Affiliation(s)
- Nick Lagast
- Department of Surgery, Ghent University, Cancer Research Institute Ghent (CRIG), Ghent B-9000, Belgium
| | - Charlotte Carlier
- Department of Surgery, Ghent University, Cancer Research Institute Ghent (CRIG), Ghent B-9000, Belgium
| | - Wim P Ceelen
- Department of Surgery, Ghent University, Cancer Research Institute Ghent (CRIG), Ghent B-9000, Belgium.
| |
Collapse
|
5
|
Asano Y, Odagiri T, Oikiri H, Matsusaki M, Akashi M, Shimoda H. Construction of artificial human peritoneal tissue by cell-accumulation technique and its application for visualizing morphological dynamics of cancer peritoneal metastasis. Biochem Biophys Res Commun 2017; 494:213-219. [DOI: 10.1016/j.bbrc.2017.10.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
|
6
|
van Baal J, Van de Vijver K, Nieuwland R, van Noorden C, van Driel W, Sturk A, Kenter G, Rikkert L, Lok C. The histophysiology and pathophysiology of the peritoneum. Tissue Cell 2017; 49:95-105. [DOI: 10.1016/j.tice.2016.11.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
|
7
|
First histological findings in rabbit model of peritoneal dialysis. ACTA VET-BEOGRAD 2010. [DOI: 10.2298/avb1006625s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|