1
|
Morphometric and Histochemical Features of the Harderian Gland in Rabbits with Different Types of Autonomous Regulation. MACEDONIAN VETERINARY REVIEW 2022. [DOI: 10.2478/macvetrev-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The tonus of autonomous centers reflected in the morpho-functional features of the organs in mammals. The study aimed to establish the influence of the autonomous regulation and its’ typological peculiarities on the structural features of the rabbits’ Harderian gland. Clinically healthy male rabbits, four months old, weighing 3.6-3.9 kg, were selected for the research. Based on the study of heart rate variability, three types of autonomous regulation were outlined, according to which three groups of rabbits were formed: ST rabbits (sympathetic dominant regulation), PS rabbits (parasympathetic dominant regulation), and NT rabbits (combined sympathetic and parasympathetic regulation). After euthanasia, the Harderian gland was dissected in all animals. Histological specimens were prepared and a morphometric examination was performed. ST rabbits corresponded to the minimal indicators in the tubular alveoli in both parts of the gland, as well as the maximum indicators of capsule thickness. NT rabbits corresponded to the maximum values of the acini area in the pink lobe, and in the white lobe - the maximal values of the cross-sectional area of the tubular alveoli, its wall area, and the epithelium height. The maximum acini area corresponded to PS rabbits in the white lobe, and in the pink lobe - the maximum indicators of the tubular alveoli cross-sectional area, and epithelial height. The pink and white lobes’ structure of the rabbit’s Harderian gland was affected by the combined tonus of the sympathetic and parasympathetic centers. The findings elucidate the regulatory and trophic effects on the Harderian gland in rabbits.
Collapse
|
2
|
Paszta W, Klećkowska-Nawrot JE, Goździewska-Harłajczuk K. Morphological evaluation of the orbit, eye tunics, eyelids, and orbital glands in young and adult aardvarks Orycteropus afer, Pallas, 1766 (Tubulidentata: Orycteropodidae) - similarities and differences with representatives of the Afrotheria clade. Anat Rec (Hoboken) 2022; 305:3317-3340. [PMID: 35202514 DOI: 10.1002/ar.24905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 11/12/2022]
Abstract
The Afrotheria clade includes a large group of extant mammals, and the aardvark (Orycteropus afer) is the only representative of the order Tubulidentata in it. Here, we studied the morphological nature of the orbital region, eye tunics, upper and lower eyelids, superficial gland of the third eyelid, the third eyelid, deep gland of the third eyelid, and lacrimal gland in post-mortem specimens obtained from three captive aardvarks, two young and one adult. The obtained samples were analyzed using macroscopic, histological, and histochemical methods. We observed choroidal tapetum lucidum fibrosum in all specimens, which was typical for aardvarks. The superficial gland of the third eyelid was a compound multilobar tubular branched gland of a mucous nature. The deep gland of the third eyelid produced a serous secretion. The seromucous secretion was typical for the lacrimal gland. We compared the morphological data of the O. afer skull with that from other endemic African mammals in the Afrotheria clade. We found that other authors provided different anatomical names for some bones and foramina located within the orbit. The types and function of eyelid glands, as well as eyeball glands of aardvarks, can primarily be connected with their habitat. Our study may constitute an introduction to the ontogenesis of individual eyeball glands in aardvarks. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wojciech Paszta
- Wrocław Zoological Garden, Wróblewskiego 1/5, Wrocław, Poland
| | - Joanna E Klećkowska-Nawrot
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska 1, Wrocław, Poland
| | - Karolina Goździewska-Harłajczuk
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska 1, Wrocław, Poland
| |
Collapse
|
3
|
Klećkowska-Nawrot JE, Goździewska-Harłajczuk K, Barszcz K. Comparative study of the eyelids and orbital glands morphology in the okapi (Okapia johnstoni, Giraffidae), Père David's deer (Elaphurus davidianus, Cervidae) and the Philippine mouse-deer (Tragulus nigricans, Tragulidae). Histol Histopathol 2019; 35:185-202. [PMID: 31271442 DOI: 10.14670/hh-18-144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The accessory organs of the eye represent part of the protective system of the eyeball. In the present study, an examination of the accessory organs of the eye of three species of captive ruminants was performed using light microscopy. In the okapi, the superficial gland of the third eyelid and lacrimal gland were complex branched multilobar tubular glands formed by mucous units with tubular secretory portions and no plasma cells. The deep gland of the third eyelid was absent in the okapi and present in both the Père David's deer and the Philippine mouse-deer. In the Philippine mouse-deer, the deep gland had a very thick connective capsule and thick interlobar septae. It contained fewer lobes forming the gland parenchyma compared to Père David's deer and other ruminants. Organized lymphoid follicles were present within the upper and lower eyelids only in the okapi and Père David's deer, while diffuse lymphocytes were observed in the Philippine mouse-deer. The orbital glands in the Père David's deer had a multilobar tubuloacinar structure with numerous plasma cells and a mucoserous character. In contrast to the Philippine mouse-deer, these glands had a serous character. The presence of several macroscopic and microscopic structural differences of the examined accessory organs of the eye in the three captive ruminant species may be understood within an ecological context and may be associated with different habitat-specific environmental conditions.
Collapse
Affiliation(s)
- Joanna Elżbieta Klećkowska-Nawrot
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| | - Karolina Goździewska-Harłajczuk
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| | - Karolina Barszcz
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Klećkowska-Nawrot JE, Goździewska-Harłajczuk K, Darska M, Barszcz K, Janeczek M. Microstructure of the eye tunics, eyelids and ocular glands of the Sulawesi bear cuscus (Ailurops ursinusTemminck, 1824) (Phalangeridae: Marsupialia) based on anatomical, histological and histochemical studies. ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Joanna E. Klećkowska-Nawrot
- Department of Biostructure and Animal Physiology; Faculty of Veterinary Medicine; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| | - Karolina Goździewska-Harłajczuk
- Department of Biostructure and Animal Physiology; Faculty of Veterinary Medicine; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| | - Marta Darska
- Faculty of Biology and Animal Science; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| | - Karolina Barszcz
- Department of Morphological Sciences; Faculty of Veterinary Medicine; Warsaw University of Life Sciences; Warsaw Poland
| | - Maciej Janeczek
- Department of Biostructure and Animal Physiology; Faculty of Veterinary Medicine; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| |
Collapse
|
5
|
Rehorek SJ, Hillenius WJ, Lovano DM, Thewissen JGM. Ontogeny of the Orbital Glands and Their Environs in the Pantropical Spotted Dolphin (Stenella attenuata: Delphinidae). Anat Rec (Hoboken) 2017; 301:77-87. [PMID: 28960854 DOI: 10.1002/ar.23693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/30/2017] [Accepted: 06/10/2017] [Indexed: 11/05/2022]
Abstract
The nasolacrimal duct (NLD) connects the orbital (often associated with the Deep Anterior Orbital gland: DAOG, a.k.a. Harderian gland) and nasal regions in many tetrapods. Adult cetaceans are usually said to lack an NLD, and there is little agreement in the literature concerning the identity of their orbital glands, which may reflect conflicting definitions rather than taxonomic variation. In this study, we examined an embryological series of the pantropical spotted dolphin (Stenella attenuata), and report numerous divergences from other tetrapods. Underdeveloped eyelids and a few ventral orbital glands are present by late Stage (S) 17. By S 19, circumorbital conjunctival glands are present. In S 20, these conjunctival glands have proliferated, eyelids (and scattered palpebral glands) have formed, and a duct similar to the NLD has appeared. Subsequently, both the palpebral glands and the NLD are progressively reduced by S 22, even as the conjunctival glands exhibit regional growth. In most tetrapods examined, the ontogeny of the NLD follows a series of three stages: Inception of NLD, Connection of orbit and nasal cavity by the NLD and Ossification (i.e., formation of the bony canal surrounding the NLD, emerging into the orbit via the lacrimal foramen in the lacrimal bone). In contrast, the dolphin NLD originates at the same time as the lacrimal bone, and a lacrimal foramen fails to develop. The cetacean fossil record shows that a lacrimal foramen was present in the earliest ancestral amphibious, freshwater forms, but was soon lost as the lineage invaded the oceans. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 301:77-87, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Willem J Hillenius
- Department of Biology, College of Charleston, Charleston, South Carolina
| | - Denise M Lovano
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | - J G M Thewissen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
6
|
Rehorek SJ, Cunningham J, Bruening AE, Johnson JL, Bhatnagar KP, Smith TD, Hillenius WJ. Development of the nasolacrimal apparatus in the Mongolian gerbil (Meriones unguiculatus), with notes on network topology and function. J Morphol 2015; 276:1005-24. [PMID: 25845915 DOI: 10.1002/jmor.20393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 11/09/2022]
Abstract
The nasolacrimal apparatus (NLA) is a multicomponent functional system comprised of multiple orbital glands (up to four larger multicellular exocrine structures), a nasal chemosensory structure (vomeronasal organ: VNO), and a connecting duct (nasolacrimal duct: NLD). Although this system has been described in all tetrapod vertebrate lineages, albeit not always with all three main components present, considerably less is known about its ontogeny. The Mongolian gerbil (Meriones unguiculatus) is a common lab rodent in which the individual components of the adult NLA have been well studied, but as yet nothing is known about the ontogeny of the NLA. In this study, serial sections of 15 fetal and three adult Mongolian gerbil heads show that the development of the NLA falls into three fetal stages: inception (origin of all features), elongation (lengthening of all features), and expansion (widening of all features). No postnatal or juvenile specimens were observed in this study, but considerable growth evidently occurs before the final adult condition is reached. The development of the orbital glands and the VNO in the Mongolian gerbil is largely consistent with those in other mammals, despite a slight nomenclatural conundrum for the anterior orbital glands. However, the Mongolian gerbil NLD follows a more circuitous route than in other tetrapods, due mainly to the convoluted arrangement of the narial cartilages, the development of a pair of enlarged incisors as well as an enlarged infraorbital foramen. The impact of these associated features on the ontogeny and phylogeny of the NLA could be examined through the approach of network science. This approach allows for the incorporation of adaptations to specific lifestyles as potential explanations for the variation observed in the NLA across different tetrapod clades.
Collapse
Affiliation(s)
- Susan J Rehorek
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057
| | - Jayna Cunningham
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057
| | - Amanda E Bruening
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057
| | - Jessica L Johnson
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057
| | - Kunwar P Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, 40292
| | - Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, 19057
| | - Willem J Hillenius
- Department of Biology, College of Charleston, Charleston, South Carolina, 29424
| |
Collapse
|
7
|
Kelleher Davis R, Doane MG, Knop E, Knop N, Dubielzig RR, Colitz CMH, Argüeso P, Sullivan DA. Characterization of ocular gland morphology and tear composition of pinnipeds. Vet Ophthalmol 2012; 16:269-75. [PMID: 23067374 DOI: 10.1111/j.1463-5224.2012.01073.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The importance of tear film integrity to ocular health in terrestrial mammals is well established, however, in marine mammals, the role of the tear film in protection of the ocular surface is not known. In an effort to better understand the function of tears in maintaining health of the marine mammal eye surface, we examined ocular glands of the California sea lion and began to characterize the biochemical nature of the tear film of pinnipeds. PROCEDURES Glands dissected from California sea lion eyelids and adnexa were examined for gross morphology, sectioned for microscopic analysis, and stained with hematoxylin and eosin. The tear film was examined using interferometry. Tears were collected from humans and pinnipeds for the analysis of protein and carbohydrate content. RESULTS The sea lion has sebaceous glands in the lid, but these glands are different in size and orientation compared with typical meibomian glands of terrestrial mammals. Two other accessory ocular glands located dorsotemporally and medially appeared to be identical in morphology, with tubulo-acinar morphology. An outer lipid layer on the ocular surface of the sea lion was not detected using interferometry, consistent with the absence of typical meibomian glands. Similar to human tears, the tears of pinnipeds contain several proteins but the ratio of carbohydrate to protein was greater than that in human tears. CONCLUSIONS Our findings indicate that the ocular gland architecture and biochemical nature of the tear film of pinnipeds have evolved to adapt to the challenges of an aquatic environment.
Collapse
Affiliation(s)
- Robin Kelleher Davis
- Schepens Eye Research Institute, Massachusetts Eye and Ear, 20 Staniford St., Boston, MA 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Babonis LS, Brischoux F. Perspectives on the convergent evolution of tetrapod salt glands. Integr Comp Biol 2012; 52:245-56. [PMID: 22586069 DOI: 10.1093/icb/ics073] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since their discovery in 1958, the function of specialized salt-secreting glands in tetrapods has been studied in great detail, and such studies continue to contribute to a general understanding of transport mechanisms of epithelial water and ions. Interestingly, during that same time period, there have been only few attempts to understand the convergent evolution of this tissue, likely as a result of the paucity of taxonomic, embryological, and molecular data available. In this review, we synthesize the available data regarding the distribution of salt glands across extant and extinct tetrapod lineages and the anatomical position of the salt gland in each taxon. Further, we use these data to develop hypotheses about the various factors that have influenced the convergent evolution of salt glands across taxa with special focus on the variation in the anatomical position of the glands and on the molecular mechanisms that may have facilitated the development of a salt gland by co-option of a nonsalt-secreting ancestral gland. It is our hope that this review will stimulate renewed interest in the topic of the convergent evolution of salt glands and inspire future empirical studies aimed at evaluating the hypotheses we lay out herein.
Collapse
Affiliation(s)
- Leslie S Babonis
- Kewalo Marine Laboratory, PBRC/University of Hawaii, Honolulu, HI 96813, USA.
| | | |
Collapse
|
9
|
Development of the Lacrimal Apparatus in the Rabbit (Oryctolagus cuniculus) and Its Potential Role as an Animal Model for Humans. ANATOMY RESEARCH INTERNATIONAL 2011; 2011:623186. [PMID: 22567296 PMCID: PMC3335492 DOI: 10.1155/2011/623186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/05/2011] [Accepted: 05/13/2011] [Indexed: 11/23/2022]
Abstract
Rabbits have been proposed as a model organism for the human lacrimal apparatus (LA), including the nasolacrimal duct (NLD), based principally on comparative studies of adult morphology; however, little is known about its development. The NLD first appears as an incomplete primordium in the subcutaneous region of the primordial eyelid and subsequently elongates to reach the naris. One posterior and three anterior orbital glands are present fetally although one of the anterior glands is soon lost. The NLD follows a tortuous path and passes through a bony canal consisting of lacrimal, maxilla, and maxilloturbinal bones at different regions. Although early developmental similarities exist to haplorhine primates, the narial opening of the NLD resembles strepsirrhines. This distinction, along with the ductal and glandular differences at the orbital end of the NLD, indicates that rabbits may be a poor model for LA drainage in primates, specifically humans.
Collapse
|
10
|
Rehorek S, Hillenius W, Leigh C, Firth B. Is It or Isn't It? A Reexamination of the Anterior Orbital Glands of the Fat-Tailed Dunnart Sminthopsis Crassicaudata (Dasyuridae: Marsupiala) and a Reevaluation of Definitions for the Harderian Gland. Anat Rec (Hoboken) 2010; 293:1449-54. [DOI: 10.1002/ar.21111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Hillenius WJ, Phillips DA, Rehorek SJ. "A new lachrymal gland with an excretory duct in red and fallow deer" by Johann jacob Harder (1694): English translation and historical perspective. Ann Anat 2007; 189:423-33. [PMID: 17910396 DOI: 10.1016/j.aanat.2006.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Harderian gland is an enigmatic orbital gland that has been described for many tetrapods, although a consistent definition of this structure has remained elusive. In particular, an unambiguous distinction between the Harderian gland and the nictitans gland, which may both occur in the anterior aspect of the orbit of mammals, remains problematic. These glands were first distinguished in 1694 by Johann Jacob Harder, a Swiss physician and anatomist. To facilitate a renewed examination of the anatomical and developmental relationships of the anterior orbital glands, we review the historical context of Harder's discovery, and provide Harder's original Latin text as well as an English translation.
Collapse
Affiliation(s)
- Willem J Hillenius
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, USA.
| | | | | |
Collapse
|