1
|
Shaheen MY. Nanocrystalline hydroxyapatite in periodontal bone regeneration: A systematic review. Saudi Dent J 2022; 34:647-660. [PMID: 36570589 PMCID: PMC9767838 DOI: 10.1016/j.sdentj.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background Periodontal diseases when persistent, results in periodontal pockets, attachment loss and progressive destruction of the alveolar bone. Grafting periodontal bone defects with bone substitute biomaterials has proven clinical success for accomplishing reconstruction of lost attachment apparatus, especially in deep intra-bony defects. Nanoparticles (NPs) have been considered indispensable in the future of health sciences and NP based alloplastic graft materials such as nanocrystalline hydroxyapatite (NCHA) hold great promise for regeneration of periodontal defects. Therefore the aim of this review is to evaluate the role of NCHA as an effective substitute for periodontal bone regeneration. Material & methods Popular scientific databases such as PubMed (Medline), Cochrane database of clinical trials, Scopus (Elsevier), Web of science (Clarivate Analytics) and Google Scholar, were searched. The literature search was restricted to published reports in English, between January 2000 and December 2021. Database search returned 1227 results which were screened based on title, author names and publication dates. Results Data from the 14 included studies were reviewed and tabulated. In the present review, all the studies reported using commercially available NCHA for periodontal bone regeneration. Conclusion NCHA is a suitable bone substitute material for periodontal bone regeneration, with outcomes comparable to that of conventionally used graft materials such as bovine xenograft and other synthetic alloplastic materials. While grafting with NCHA in intrabony periodontal defects, after any form of periodontal flap surgery or debridement, significantly improves bone regeneration by 6 months, addition of adjuncts like EMD and PRF further enhance the outcomes.
Collapse
|
2
|
Anatomical journals as publication platforms for dental research. Ann Anat 2022; 244:151960. [DOI: 10.1016/j.aanat.2022.151960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022]
|
3
|
Shaikh MS, Zafar MS, Alnazzawi A, Javed F. Nanocrystalline hydroxyapatite in regeneration of periodontal intrabony defects: A systematic review and meta-analysis. Ann Anat 2021; 240:151877. [PMID: 34864225 DOI: 10.1016/j.aanat.2021.151877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/09/2021] [Accepted: 11/21/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alveolar bone loss and mobility of teeth is commonly observed in periodontitis patients. Regeneration of periodontal intrabony defects is indicated to restore the lost bone and periodontal tissues. The aim of the present study was to evaluate the clinical outcomes of periodontal intrabony lesions by using nanocrystalline hydroxyapatite (NHA) graft and comparing it with open flap debridement (OFD) alone. MATERIALS AND METHODS The eligibility criteria encompassed randomized (RCTs) and controlled clinical trials (CCTs). Weighted mean differences were calculated for clinical attachment level (CAL) gain, probing pocket depth (PPD) reduction and gingival recession (REC) change, demonstrated as forest plots. The revised Cochrane Risk of Bias tool for randomized trials (RoB2) and Risk of Bias in Non-randomized Studies of Interventions (ROBINS-I) tool were used for quality assessment of RCTs and non-randomized trials respectively. RESULTS From 22 full-text articles identified, three RCTs, one CCT and one retrospective follow-up of RCT were included. All the five papers comprised the quantitative evaluation. The use of NHA graft provided additional CAL gain of 0.96 mm (p = 0.0009) and PPD reduction of 0.97 mm (p < 0.00001) when compared to OFD alone. However, in terms of REC changes, no considerable benefits of NHA graft were demonstrated than OFD alone (p = 0.48). CONCLUSIONS The bioactive NHA graft showed promising results clinically in regenerative periodontology and can be considered for the management of periodontal intrabony defects. The use of NHA graft considerably provided better clinical outcomes in intrabony defects compared to using the OFD alone. Future research investigating NHA graft against other regenerative materials including specific BGs, at longer follow-up periods and bigger sample sizes and in furcation defects warranted.
Collapse
Affiliation(s)
- Muhammad Saad Shaikh
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi, 75510, Pakistan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah Al Munawwarah 41311, Saudi Arabia; Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan.
| | - Ahmad Alnazzawi
- Department of Substitutive Dental Sciences, College of Dentistry, Taibah University, Al Madinah Al Munawwarah 41311, Saudi Arabia
| | - Fawad Javed
- Department of Orthodontics, Eastman Institute for Oral Health, University of Rochester, New York 14620, United States
| |
Collapse
|
4
|
Shaikh MS, Zafar MS, Alnazzawi A. Comparing Nanohydroxyapatite Graft and Other Bone Grafts in the Repair of Periodontal Infrabony Lesions: A Systematic Review and Meta-Analysis. Int J Mol Sci 2021; 22:12021. [PMID: 34769451 PMCID: PMC8584357 DOI: 10.3390/ijms222112021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To compare the results of periodontal infrabony lesions treated using nanohydroxyapatite (NcHA) graft with other bone grafts (BGs). METHODS Four electronic databases were searched including PubMed (NLM), Embase (Ovid), Medline, and Dentistry and Oral Sciences (EBSCO). The inclusion criteria included randomised controlled clinical trials (RCTs) and controlled clinical trials (CCTs). The clinical results of NcHA were compared with other BGs. For clinical attachment level (CAL) gain, probing pocket depth (PPD) decrease, and gingival recession (REC) change, weighted averages and forest plots were computed. RESULTS Seven RCTs fulfilled the selection criteria that were included. When NcHA was compared to other BGs, no clinically significant differences were found in terms of each outcome assessed, except the REC change for synthetic BGs as compared to NcHA. CONCLUSIONS The use of an NcHA graft showed equivalent results compared to other types of BGs. To further validate these findings, future studies are required to compare the NcHA and various BGs over longer time periods and in furcation deficiencies.
Collapse
Affiliation(s)
- Muhammad Saad Shaikh
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah 41311, Al Munawwarah, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Ahmad Alnazzawi
- Department of Substitutive Dental Sciences, College of Dentistry, Taibah University, Al Madinah 41311, Al Munawwarah, Saudi Arabia;
| |
Collapse
|
5
|
Nibali L, Koidou VP, Nieri M, Barbato L, Pagliaro U, Cairo F. Regenerative surgery versus access flap for the treatment of intra‐bony periodontal defects: A systematic review and meta‐analysis. J Clin Periodontol 2020; 47 Suppl 22:320-351. [DOI: 10.1111/jcpe.13237] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Luigi Nibali
- Periodontology Unit Faculty of Dentistry, Oral & Craniofacial Sciences Centre for Host‐Microbiome Interactions King's College London London UK
| | - Vasiliki P. Koidou
- Centre for Oral Immunobiology and Regenerative Medicine and Centre for Oral Clinical Research Institute of Dentistry Queen Mary University London (QMUL) London UK
| | - Michele Nieri
- Research Unit in Periodontology and Periodontal Medicine Department of Clinical and Experimental Medicine University of Florence Florence Italy
| | - Luigi Barbato
- Research Unit in Periodontology and Periodontal Medicine Department of Clinical and Experimental Medicine University of Florence Florence Italy
| | - Umberto Pagliaro
- Research Unit in Periodontology and Periodontal Medicine Department of Clinical and Experimental Medicine University of Florence Florence Italy
| | - Francesco Cairo
- Research Unit in Periodontology and Periodontal Medicine Department of Clinical and Experimental Medicine University of Florence Florence Italy
| |
Collapse
|
6
|
Atchuta A, Gooty JR, Guntakandla VR, Palakuru SK, Durvasula S, Palaparthy R. Clinical and radiographic evaluation of platelet-rich fibrin as an adjunct to bone grafting demineralized freeze-dried bone allograft in intrabony defects. J Indian Soc Periodontol 2020; 24:60-66. [PMID: 31983847 PMCID: PMC6961455 DOI: 10.4103/jisp.jisp_99_19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 11/18/2022] Open
Abstract
Background: Several bone graft materials are popularized in the treatment of intrabony defects. Demineralized freeze-dried bone allograft (DFDBA) is widely used in the treatment of intrabony defects. Platelet-rich fibrin (PRF) is autologous blood preparation which helps in wound healing and regeneration. Hence, this study focuses on evaluation of PRF, DFDBA, and their combination in the regeneration of intrabony defects. Materials and Methods: A total of 39 sites with intrabony defects were randomly assigned into three groups: (Group I - Open flap debridement, Group II - DFDBA alone, and Group III- DFDBA + PRF). Parameters such as probing pocket depth (PPD), relative attachment level (RAL), and radiographic bone fill were measured at baseline, 3 months, and 6 months. Intragroup comparison at various study intervals was made using one-way ANOVA test. Intergroup comparison was made using Tukey's multiple post hoc test. Results: Reduction in the PPD and greater difference in RAL was observed over the study period in all the three groups with greater reduction in DFDBA + PRF group. Reduction in the radiographic defect depths was observed over the study period in all the three groups with the greatest reduction of 38.99% in the DFDBA + PRF group. However, no statistically significant difference was reported by DFDBA versus DFDBA + PRF group. Conclusion: Combination of DFDBA and PRF improved the clinical and radiographic parameters compared to PRF and DFDBA alone. PRF was combined with DFDBA to produce a synergistic effect for treating intrabony defects in chronic periodontitis patients.
Collapse
Affiliation(s)
- Abhinav Atchuta
- Department of Periodontics, Kamineni Institute of Dental Sciences, Nalgonda, Telangana, India
| | - Jagadish Reddy Gooty
- Department of Periodontics, Kamineni Institute of Dental Sciences, Nalgonda, Telangana, India
| | | | - Sunil Kumar Palakuru
- Department of Periodontics, CKS Teja Institute of Dental Sciences, Tirupati, Andhra Pradesh, India
| | - Satyanarayana Durvasula
- Department of Periodontics, Kamineni Institute of Dental Sciences, Nalgonda, Telangana, India
| | - Rajababu Palaparthy
- Department of Periodontics, Kamineni Institute of Dental Sciences, Nalgonda, Telangana, India
| |
Collapse
|
7
|
Dewi AH, Ana ID. The use of hydroxyapatite bone substitute grafting for alveolar ridge preservation, sinus augmentation, and periodontal bone defect: A systematic review. Heliyon 2018; 4:e00884. [PMID: 30417149 PMCID: PMC6218667 DOI: 10.1016/j.heliyon.2018.e00884] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/16/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES We determined and structurally analyzed the reported effect of hydroxyapatite (HA) bone substitute on alveolar bone regeneration. To the best of our knowledge, no systematic reviews have previously reported the bone regenerative effect of the HA bone substitute. MATERIALS AND METHODS A literature search was performed for articles published up to August 2015 using MEDLINE with the search terms "hydroxyapatite," "bone regeneration," and "alveolar bone" as well as their known synonyms. The inclusion criteria were set up for human trials with at least five patients. The literature search, eligible article selection, and data extraction were independently performed by two readers, and their agreement was reported by κ value. RESULTS Of the 504 studies found using the MEDLINE literature search, 241 were included for further steps (inter-reader agreement, κ = 0.968). Abstract screening yielded 74 studies (κ = 0.910), with 42 completely fulfilling the inclusion criteria (κ = 0.864). In a final step, 42 studies were further analyzed, with 17 and 25 studies with and without statistical analysis, respectively. The 17 studies reporting similar outcome measures were compared using the calculated 95% confidence intervals. The effect of HA on ridge preservation could not be evaluated. CONCLUSIONS The use of the HA bone substitute interfered with the normal healing process, with significant differences found for sinus augmentation but not for periodontal bone defects. Thus, a bone substitute with optimal bone regenerative properties for alveolar ridge or socket preservation, sinus augmentation, and periodontal bony defect should be developed.
Collapse
Affiliation(s)
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
8
|
Chen X, Wu G, Feng Z, Dong Y, Zhou W, Li B, Bai S, Zhao Y. Advanced biomaterials and their potential applications in the treatment of periodontal disease. Crit Rev Biotechnol 2015; 36:760-75. [PMID: 26004052 DOI: 10.3109/07388551.2015.1035693] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Periodontal disease is considered as a widespread infectious disease and the most common cause of tooth loss in adults. Attempts for developing periodontal disease treatment strategies, including drug delivery and regeneration approaches, provide a useful experimental model for the evaluation of future periodontal therapies. Recently, emerging advanced biomaterials including hydrogels, films, micro/nanofibers and particles, hold great potential to be utilized as cell/drug carriers for local drug delivery and biomimetic scaffolds for future regeneration therapies. In this review, first, we describe the pathogenesis of periodontal disease, including plaque formation, immune response and inflammatory reactions caused by bacteria. Second, periodontal therapy and an overview of current biomaterials in periodontal regenerative medicine have been discussed. Third, the roles of state-of-the-art biomaterials, including hydrogels, films, micro/nanofibers and micro/nanoparticles, developed for periodontal disease treatment and periodontal tissue regeneration, and their fabrication methods, have been presented. Finally, biological properties, including biocompatibility, biodegradability and immunogenicity of the biomaterials, together with their current applications strategies are given. Conclusive remarks and future perspectives for such advanced biomaterials are discussed.
Collapse
Affiliation(s)
- Xi Chen
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Guofeng Wu
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Zhihong Feng
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Yan Dong
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Wei Zhou
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Bei Li
- b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and.,c State Key Laboratory of Military Stomatology, Center for Tissue Engineering , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China
| | - Shizhu Bai
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Yimin Zhao
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| |
Collapse
|
9
|
Clinical outcomes after treatment of periodontal intrabony defects with nanocrystalline hydroxyapatite (Ostim) or enamel matrix derivatives (Emdogain): a randomized controlled clinical trial. BIOMED RESEARCH INTERNATIONAL 2014; 2014:786353. [PMID: 24689056 PMCID: PMC3932837 DOI: 10.1155/2014/786353] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/05/2013] [Accepted: 12/25/2013] [Indexed: 12/04/2022]
Abstract
Introduction. Periodontitis is an inflammatory process in response to dental biofilm and leads to periodontal tissue destruction. The aim of this study was the comparison of outcomes using either an enamel matrix derivative (EMD) or a nanocrystalline hydroxyapatite (NHA) in regenerative periodontal therapy after 6 and 12 months. Methods. Using a parallel group, prospective randomized study design, we enrolled 19 patients in each group. The primary outcome was bone fill after 12 months. Attachment gain, probing pocket depth (PPD) reduction, and recession were secondary variables. Additionally, early wound healing and adverse events were assessed. Data analysis included test of noninferiority of NHA group (test) compared to EMD group (reference) in bone fill. Differences in means of secondary variables were compared by paired t-test, frequency data by exact χ2 test. Results. Both groups showed significant bone fill, reduction of PPD, increase in recession, and gain of attachment after 6 and 12 months. No significant differences between groups were found at any time point. Adverse events were comparable between both groups with a tendency of more complaints in the NHA group. Conclusion. The clinical outcomes were similar in both groups. EMD could have some advantage compared to NHA regarding patients comfort and adverse events. The trial is registered with ClinicalTrials.gov NCT00757159.
Collapse
|
10
|
Dorozhkin SV. Calcium orthophosphates in dentistry. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1335-1363. [PMID: 23468163 DOI: 10.1007/s10856-013-4898-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/18/2013] [Indexed: 06/01/2023]
Abstract
Dental caries, also known as tooth decay or a cavity, remains a major public health problem in the most communities even though the prevalence of disease has decreased since the introduction of fluorides for dental care. Therefore, biomaterials to fill dental defects appear to be necessary to fulfill customers' needs regarding the properties and the processing of the products. Bioceramics and glass-ceramics are widely used for these purposes, as dental inlays, onlays, veneers, crowns or bridges. Calcium orthophosphates belong to bioceramics but they have some specific advantages over other types of bioceramics due to a chemical similarity to the inorganic part of both human and mammalian bones and teeth. Therefore, calcium orthophosphates (both alone and as components of various formulations) are used in dentistry as both dental fillers and implantable scaffolds. This review provides brief information on calcium orthophosphates and describes in details current state-of-the-art on their applications in dentistry and dentistry-related fields. Among the recognized dental specialties, calcium orthophosphates are most frequently used in periodontics; however, the majority of the publications on calcium orthophosphates in dentistry are devoted to unspecified "dental" fields.
Collapse
|