1
|
Lv X, Wang J, Wei F. A persistent mineralization process in alveolar bone throughout the postnatal growth stage in rats. Arch Oral Biol 2024; 167:106062. [PMID: 39094423 DOI: 10.1016/j.archoralbio.2024.106062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Alveolar bone quality is essential for the maxillofacial integrity and function, and depends on alveolar bone mineralization. This study aims to investigate the in vivo changes in alveolar bone mineralization, from the perspective of mineral deposition and crystal transition in postnatal rats. DESIGN Nine postnatal time points of Wistar rats, ranging from day 1 to 56, were set to obtain the maxillary alveolar bone samples. Each time point consisted of ninety rats, with 45 females and 45 males. Macromorphology of alveolar bone was reconducted by Micro-Computed Tomography and the mineral content was quantified via Thermogravimetric analysis, Scanning Electron Microscope, High-Resolution Transmission Electron Microscopy and vibrational spectroscopy. Furthermore, the crystallinity and composition were characterized by vibrational spectroscopy, X-ray Diffraction, X-ray Photoelectron Spectroscopy and Selected Area Electron Diffraction. RESULTS The progressive increase of mineral deposition was accompanied by substantial growth in alveolar bone mass and volume in postnatal rats. Whereas the mineral percentage initially decreased and then increased, reaching a nadir on postnatal day 14 (P14) when tooth eruption was first observed. Besides, localized mineralization was initiated by the formation of amorphous precursors and then converted into mineral crystals, while there was no statistically significant change in the average crystallinity of the bone during growth. CONCLUSION Mineralization of alveolar bone is ongoing throughout the early growth in postnatal rats. Mineral deposition increases with age, whereas the crystallinity remains stable within a certain range. Besides, the mineral percentage reaches its lowest point on P14, which may be attributed to tooth eruption.
Collapse
Affiliation(s)
- Xinli Lv
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong 250012, China
| | - Jixiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong 250012, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Nagasaki K, Chavez M, Nagasaki A, Taylor J, Tan M, Ma M, Ralston E, Thew M, Kim DG, Somerman M, Foster B. The Bone Sialoprotein RGD Domain Modulates and Maintains Periodontal Development. J Dent Res 2022; 101:1238-1247. [PMID: 35686360 PMCID: PMC9403724 DOI: 10.1177/00220345221100794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bone sialoprotein (gene: Ibsp; protein: BSP) is a multifunctional extracellular matrix protein present in bone, cementum, and dentin. Accumulating evidence supports BSP as a key regulator of mineralized tissue formation via evolutionarily conserved functional domains, including a C-terminal integrin-binding Arg-Gly-Asp (RGD) domain implicated in extracellular matrix-cell signaling. Ablation of Ibsp in mice (Ibsp-/-) results in impaired bone growth and mineralization and defective osteoclastogenesis, with effects in the craniofacial region including reduced acellular cementum formation, detachment of the periodontal ligament (PDL), alveolar bone hypomineralization, and severe periodontal breakdown. We hypothesized that BSP-RGD plays an important role in cementum and alveolar bone formation and mineralization, as well as periodontal function. This hypothesis was tested by replacing the RGD motif with a nonfunctional Lys-Ala-Glu (KAE) sequence in (IbspKAE/KAE) mice and OCCM.30 murine (IbspKAE) cementoblasts. The RGD domain was not critical for acellular or cellular cementum formation in IbspKAE/KAE mice. However, PDL volume and thickness were increased, and significantly more tartrate-resistant acid phosphatase-positive osteoclasts were found on alveolar bone surfaces of IbspKAE/KAE mice versus wild type mice. PDL organization was disrupted as indicated by picrosirius red stain, second harmonic generation imaging, dynamic mechanical analysis, and decreased asporin proteoglycan localization. In vitro studies implicated RGD functions in cell migration, adhesion, and mineralization, and this was confirmed by an ossicle implant model where cells lacking BSP-RGD showed substantial defects as compared with controls. In total, the BSP-RGD domain is implicated in periodontal development, though the scale and scope of changes indicated by in vitro studies indicate that other factors may partially compensate for and reduce the phenotypic severity of mice lacking BSP-RGD in vivo.
Collapse
Affiliation(s)
- K. Nagasaki
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M.B. Chavez
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - A. Nagasaki
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J.M. Taylor
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M.H. Tan
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M. Ma
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - E. Ralston
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M.E. Thew
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - D.-G. Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M.J. Somerman
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - B.L. Foster
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Ko D(J, Kelly T, Thompson L, Uppal JK, Rostampour N, Webb MA, Zhu N, Belev G, Mondal P, Cooper DML, Boughner JC. Timing of Mouse Molar Formation Is Independent of Jaw Length Including Retromolar Space. J Dev Biol 2021; 9:jdb9010008. [PMID: 33809066 PMCID: PMC8006249 DOI: 10.3390/jdb9010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 11/30/2022] Open
Abstract
For humans and other mammals to eat effectively, teeth must develop properly inside the jaw. Deciphering craniodental integration is central to explaining the timely formation of permanent molars, including third molars which are often impacted in humans, and to clarifying how teeth and jaws fit, function and evolve together. A factor long-posited to influence molar onset time is the jaw space available for each molar organ to form within. Here, we tested whether each successive molar initiates only after a minimum threshold of space is created via jaw growth. We used synchrotron-based micro-CT scanning to assess developing molars in situ within jaws of C57BL/6J mice aged E10 to P32, encompassing molar onset to emergence. We compared total jaw, retromolar and molar lengths, and molar onset times, between upper and lower jaws. Initiation time and developmental duration were comparable between molar upper and lower counterparts despite shorter, slower-growing retromolar space in the upper jaw, and despite size differences between upper and lower molars. Timing of molar formation appears unmoved by jaw length including space. Conditions within the dental lamina likely influence molar onset much more than surrounding jaw tissues. We theorize that molar initiation is contingent on sufficient surface area for the physical reorganization of dental epithelium and its invagination of underlying mesenchyme.
Collapse
Affiliation(s)
- Daisy (Jihyung) Ko
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (D.K.); (T.K.); (L.T.); (J.K.U.); (N.R.); (D.M.L.C.)
| | - Tess Kelly
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (D.K.); (T.K.); (L.T.); (J.K.U.); (N.R.); (D.M.L.C.)
| | - Lacey Thompson
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (D.K.); (T.K.); (L.T.); (J.K.U.); (N.R.); (D.M.L.C.)
| | - Jasmene K. Uppal
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (D.K.); (T.K.); (L.T.); (J.K.U.); (N.R.); (D.M.L.C.)
| | - Nasim Rostampour
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (D.K.); (T.K.); (L.T.); (J.K.U.); (N.R.); (D.M.L.C.)
| | - Mark Adam Webb
- Canadian Light Source, University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada; (M.A.W.); (N.Z.); (G.B.)
| | - Ning Zhu
- Canadian Light Source, University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada; (M.A.W.); (N.Z.); (G.B.)
| | - George Belev
- Canadian Light Source, University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada; (M.A.W.); (N.Z.); (G.B.)
| | - Prosanta Mondal
- Clinical Research Support Unit, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - David M. L. Cooper
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (D.K.); (T.K.); (L.T.); (J.K.U.); (N.R.); (D.M.L.C.)
| | - Julia C. Boughner
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (D.K.); (T.K.); (L.T.); (J.K.U.); (N.R.); (D.M.L.C.)
- Correspondence:
| |
Collapse
|
4
|
Svandova E, Peterkova R, Matalova E, Lesot H. Formation and Developmental Specification of the Odontogenic and Osteogenic Mesenchymes. Front Cell Dev Biol 2020; 8:640. [PMID: 32850793 PMCID: PMC7396701 DOI: 10.3389/fcell.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Within the mandible, the odontogenic and osteogenic mesenchymes develop in a close proximity and form at about the same time. They both originate from the cranial neural crest. These two condensing ecto-mesenchymes are soon separated from each other by a very loose interstitial mesenchyme, whose cells do not express markers suggesting a neural crest origin. The two condensations give rise to mineralized tissues while the loose interstitial mesenchyme, remains as a soft tissue. This is crucial for proper anchorage of mammalian teeth. The situation in all three regions of the mesenchyme was compared with regard to cell heterogeneity. As the development progresses, the early phenotypic differences and the complexity in cell heterogeneity increases. The differences reported here and their evolution during development progressively specifies each of the three compartments. The aim of this review was to discuss the mechanisms underlying condensation in both the odontogenic and osteogenic compartments as well as the progressive differentiation of all three mesenchymes during development. Very early, they show physical and structural differences including cell density, shape and organization as well as the secretion of three distinct matrices, two of which will mineralize. Based on these data, this review highlights the consecutive differences in cell-cell and cell-matrix interactions, which support the cohesion as well as mechanosensing and mechanotransduction. These are involved in the conversion of mechanical energy into biochemical signals, cytoskeletal rearrangements cell differentiation, or collective cell behavior.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Renata Peterkova
- Department of Histology and Embryology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| |
Collapse
|
5
|
Bobek J, Oralova V, Lesot H, Kratochvilova A, Doubek J, Matalova E. Onset of calciotropic receptors during the initiation of mandibular/alveolar bone formation. Ann Anat 2019; 227:151427. [PMID: 31614180 DOI: 10.1016/j.aanat.2019.151427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Mandibular/alveolar (m/a) bone, as a component of the periodontal apparatus, allows for the proper tooth anchorage and function of dentition. Bone formation around the tooth germs starts prenatally and, in the mouse model, the mesenchymal condensation turns into a complex vascularized bone (containing osteo-blasts, -cytes, -clasts) within only two days. This very short but critical period is characterized by synchronized cellular and molecular events. The m/a bone, as others, is subjected to endocrine regulations. This not only requires vasculature to allow the circulation of active molecules (ligands), but also the expression of corresponding cell receptors to define target tissues. This contribution aimed at following the dynamics of calciotropic receptors´ expression during morphological transformation of a mesenchymal condensation into the initial m/a bone structure. Receptors for all three calciotropic systemic regulators: parathormone, calcitonin and activated vitamin D (calcitriol), were localized on serial histological sections using immunochemistry and their relative expression was quantified by q-PCR. The onset of calciotropic receptors was followed along with bone cell differentiation (as checked using osteocalcin, sclerostin, RANK and TRAP) and vascularization (CD31) during mouse prenatal/embryonic (E) days 13-15 and 18. Additionally, the timing of calciotropic receptor appearance was compared with that of estrogen receptors (ESR1, ESR2). PTH receptor (PTH1r) appeared in the bone already at E13, when the first osteocalcin-positive cells were detected within the mesenchymal condensation forming the bone anlage. At this stage, blood vessels were only lining the condensation. At E14, the osteoblasts started to express the receptor for activated vitamin D (VDR). At this stage, the vasculature just penetrated the forming bone. On the same day, the first TRAP-positive (but not yet multinucleated) osteoclastic cells were identified. However, calcitonin receptor was detected only one day later. The first Sost-positive osteocytes, present at E15, were PTH1r and VDR positive. ESR1 almost copied the expression pattern of PTH1r, and ESR2 appearance was similar with VDR with a significant increase between E15 and E18. This report focuses on the in vivo situation and links morphological transformation of the mesenchymal cell condensation into a bone structure with dynamics of cell differentiation/maturation, vascularization and onset of receptors for calciotropic endocrine signalling in developing m/a bone.
Collapse
Affiliation(s)
- Jan Bobek
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Veronika Oralova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic; Department of Biology, University of Ghent, Ghent, Belgium
| | - Adela Kratochvilova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Jaroslav Doubek
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic; Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| |
Collapse
|
6
|
Marchiori D, Packota G, Boughner J. Initial third molar development is delayed in jaws with short distal space: An early impaction sign? Arch Oral Biol 2019; 106:104475. [DOI: 10.1016/j.archoralbio.2019.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/05/2019] [Accepted: 06/28/2019] [Indexed: 01/12/2023]
|
7
|
Silver-Albumin Tissue Staining Protocol to Visualize Odontogenesis in Whole Embryos. Methods Mol Biol 2019. [PMID: 30838578 DOI: 10.1007/978-1-4939-9012-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Visualizing tooth organs from their earliest inception as they actually appear in three dimensions has, until recently, been difficult due to the technical obstacle of imaging these tiny, translucent, low-density embryonic craniodental tissues. Related to this obstacle, quantifying craniodental morphology has been confounded by the time consuming need to physically section and then digitally photograph and reconstruct these images of tissues into 3D volumes. Here we provide a simple solution in the form of an overnight silver albumin tissue stain for whole embryos. Because it is differentially absorbed by embryonic tissues, this stain generates the contrast needed to detect and visualize unmineralized dental tissues. Stained specimens can be scanned using either desktop or synchrotron micro-computed tomography systems, generating digital 3D datasets of whole embryos that can immediately be used to assess dental morphology and histology. Craniodental structures can then be measured with high precision and accuracy using 3D image analysis software.
Collapse
|
8
|
Chen J, He Y, Keilig L, Reimann S, Hasan I, Weinhold J, Radlanski R, Bourauel C. Numerical investigations of bone remodelling around the mouse mandibular molar primordia. Ann Anat 2019; 222:146-152. [DOI: 10.1016/j.aanat.2018.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 11/25/2022]
|
9
|
Veselá B, Švandová E, Bobek J, Lesot H, Matalová E. Osteogenic and Angiogenic Profiles of Mandibular Bone-Forming Cells. Front Physiol 2019; 10:124. [PMID: 30837894 PMCID: PMC6389724 DOI: 10.3389/fphys.2019.00124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 11/24/2022] Open
Abstract
The mandible is a tooth-bearing structure involving one of the most prominent bones of the facial region. Mesenchymal cell condensation is the first morphological sign of osteogenesis, and several studies have focused on this stage also in the mandible. Little information is available about the early post-condensation period, during which avascular soft condensation turns into vascularized bone, and all three major bone cell types, osteoblasts, osteocytes, and osteoclasts, differentiate. In the mouse first lower molar region, the post-condensation period corresponds to the prenatal days 13–15. If during this critical period, when osteogenesis reaches the point of major bone cell differentiation, vascularization already has to play a critical role, one should be able to show molecular changes which support both types of cellular events. The aim of the present report was to follow in organ context the expression of major osteogenic and angiogenic markers and identify those that are up- or downregulated during this period. To this end, PCR Array was applied covering molecules involved in osteoblastic cell proliferation, commitment or differentiation, extracellular matrix (ECM) deposition, mineralisation, osteocyte maturation, angiogenesis, osteoclastic differentiation, and initial bone remodeling. From 161 analyzed osteogenic and angiogenic factors, the expression of 37 was altered when comparing the condensation stage with the bone stage. The results presented here provide a molecular survey of the early post-condensation stage of mandibular/alveolar bone development which has not yet been investigated in vivo.
Collapse
Affiliation(s)
- Barbora Veselá
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Eva Švandová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Jan Bobek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Hervé Lesot
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Eva Matalová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| |
Collapse
|
10
|
Radlanski RJ, Renz H, Tsengelsaikhan N, Schuster F, Zimmermann CA. The remodeling pattern of human mandibular alveolar bone during prenatal formation from 19 to 270mm CRL. Ann Anat 2016; 205:65-74. [PMID: 26921449 DOI: 10.1016/j.aanat.2016.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 11/30/2022]
Abstract
The underlying mechanisms of human bone morphogenesis leading to a topologically specific shape remain unknown, despite increasing knowledge of the basic molecular aspects of bone formation and its regulation. The formation of the alveolar bone, which houses the dental primordia, and later the dental roots, may serve as a model to approach general questions of bone formation. Twenty-five heads of human embryos and fetuses (Radlanski-Collection, Berlin) ranging from 19mm to 270mm (crown-rump-length) CRL were prepared as histological serial sections. For each stage, virtual 3D-reconstructions were made in order to study the morphogenesis of the mandibular molar primordia with their surrounding bone. Special focus was given to recording the bone-remodeling pattern, as diagnosed from the histological sections. In early stages (19-31mm CRL) developing bone was characterized by appositional only. At 41, in the canine region, mm CRL bony extensions were found forming on the bottom of the trough. Besides general apposition, regions with resting surfaces were also found. At a fetal size of 53mm CRL, septa have developed and led to a compartment for canine development. Furthermore, one shared compartment for the incisor primordia and another shared compartment for the molars also developed. Moreover, the inner surfaces of the dental crypts showed resorption of bone. From this stage on, a general pattern became established such that the compartmentalizing ridges and septa between all of the dental primordia and the brims of the crypts were noted, and were due to appositional growth of bone, while the crypts enlarged on their inner surfaces by resorption. By 160mm CRL, the dental primordia were larger, and all of the bony septa had become reduced in size. The primordia for the permanent teeth became visible at 225mm CRL and shared the crypts of their corresponding deciduous primordia.
Collapse
Affiliation(s)
- Ralf J Radlanski
- Charité - Campus Benjamin Franklin at Freie Universität Berlin, Center for Dental and Craniofacial Sciences, Dept. of Craniofacial Developmental Biology, Assmannshauser Str. 4-6, 14197 Berlin, Germany.
| | - Herbert Renz
- Charité - Campus Benjamin Franklin at Freie Universität Berlin, Center for Dental and Craniofacial Sciences, Dept. of Craniofacial Developmental Biology, Assmannshauser Str. 4-6, 14197 Berlin, Germany
| | - Nyamdorj Tsengelsaikhan
- Charité - Campus Benjamin Franklin at Freie Universität Berlin, Center for Dental and Craniofacial Sciences, Dept. of Craniofacial Developmental Biology, Assmannshauser Str. 4-6, 14197 Berlin, Germany
| | - Felix Schuster
- Charité - Campus Benjamin Franklin at Freie Universität Berlin, Center for Dental and Craniofacial Sciences, Dept. of Craniofacial Developmental Biology, Assmannshauser Str. 4-6, 14197 Berlin, Germany
| | - Camilla A Zimmermann
- Charité - Campus Benjamin Franklin at Freie Universität Berlin, Center for Dental and Craniofacial Sciences, Dept. of Craniofacial Developmental Biology, Assmannshauser Str. 4-6, 14197 Berlin, Germany
| |
Collapse
|
11
|
Minaříková M, Oralová V, Veselá B, Radlanski RJ, Matalová E. Osteogenic Profile of Mesenchymal Cell Populations Contributing to Alveolar Bone Formation. Cells Tissues Organs 2015; 200:339-48. [PMID: 26451912 DOI: 10.1159/000439165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2015] [Indexed: 11/19/2022] Open
Abstract
Teeth develop within the surrounding periodontal tissues, involving the alveolar bone, periodontal ligament and cementum. The alveolar bone originates through the process of intramembranous ossification involving mesenchymal cells from the tooth germ. As most available data are related to endochondral ossification, we examined the molecular background of alveolar bone development. We investigated the osteogenic profile of mesenchymal cells dissected from mouse mandible slices at the stage of early alveolar bone formation. Relative monitoring of gene expression was undertaken using PCR Arrays; this included the profiles of 84 genes associated with osteogenesis. To examine the tooth-bone interface, stages with detectable changes in bone remodelling during development (E13.0, E14.0 and E15.0) were chosen and compared with each other. These results showed a statistically significant increase in the expression of the genes Fgf3, Ctsk, Icam-1, Mmp9, Itga3 and Tuft1, and of a wide range of collagens (Col1a2, Col3a1, Col7a1, Col12a1, Col14a1). Decreased expression was detected in the case of Col2a1, Sox9, Smad2 and Vegfb. To confirm these changes in gene expression, immunofluorescence analyses of Mmp9 and Sox9 proteins were performed in situ. Our research has identified several candidate genes that may be crucial for the initiation of alveolar bone formation and is the basis for further functional studies.
Collapse
Affiliation(s)
- Monika Minaříková
- Institute of Animal Physiology and Genetics CAS, v.v.i., Brno, Czech Republic
| | | | | | | | | |
Collapse
|