1
|
Fujimoto H, Kimura-Kataoka K, Takeuchi A, Yoshimiya M, Kawakami R. Evaluation of age estimation using alveolar bone images. Forensic Sci Int 2024; 364:112237. [PMID: 39366073 DOI: 10.1016/j.forsciint.2024.112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/01/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVE The purpose of this study is to examine the time-related changes of alveolar bone in 2D images quantitatively and to estimate age groups based on the change index. MATERIALS AND METHODS The 238 panoramic X-ray images and 140 CT panoramic reconstructed images of the permanent dentition period were used to examine age-related changes. Comparisons between the younger age group and each of the other age groups were calculated using the landmark method of Procrustes analysis. As aging changes were observed in each age group, age estimation was performed using antemortem panoramic X-ray images and postmortem CT images so that they could be used in practice. The CT images used in the age estimation were performed using forty-two postmortem CT panoramic reconstructed images of known age submitted to the judicial autopsy. RESULTS Both panoramic and CT images showed changes in the alveolar bone over time. Age estimation using postmortem CT images provided a certain assessment. CONCLUSION In this study, clinically observed changes in alveolar bone over time were quantified on the images. Furthermore, the possibility of age estimation by alveolar bone was also suggested. The use of an updatable clinical database that can be stored in coordinate values offers the potential for age estimation in line with the times.
Collapse
Affiliation(s)
- Hideko Fujimoto
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Japan; Division of Legal Medicine, Tottori University, Japan; Fujimoto Clinic for Oral and Maxillofacial Surgery, Japan.
| | | | - Akiko Takeuchi
- Department of Forensic medicine, Center for Cause of Death Investigation, Graduate School of Medicine, Hokkaido University, Japan; Department Radiology, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Motoo Yoshimiya
- Department of Forensic Medicine, University of Fukui School of Medical Sciences, Japan
| | - Ryoji Kawakami
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Japan
| |
Collapse
|
2
|
Norazman SI, Mohd Zaffarin AS, Shuid AN, Hassan H, Soleiman IN, Kuan WS, Alias E. A Review of Animal Models for Studying Bone Health in Type-2 Diabetes Mellitus (T2DM) and Obesity. Int J Mol Sci 2024; 25:9399. [PMID: 39273348 PMCID: PMC11394783 DOI: 10.3390/ijms25179399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Preclinical research on diabetes and obesity has been carried out in various animal models over the years. These animal models are developed from genetic manipulation that affects their body metabolism, chemical-induced procedures, diet alteration/modifications, or combinations of the aforementioned approaches. The diabetic and obesity animal models have allowed researchers to not only study the pathological aspect of the diseases but also enable them to screen and explore potential therapeutic compounds. Besides several widely known complications such as macrovascular diseases, diabetic neuropathy, nephropathy and retinopathy, type 2 diabetes mellitus is also known to affect bone health. There is also evidence to suggest obesity affects bone health. Therefore, continuous research needs to be conducted to find a remedy or solution to this matter. Previous literature reported evidence of bone loss in animal models of diabetes and obesity. These findings, as highlighted in this review, further augment the suggestion of an inter-relationship between diabetes, obesity and bone loss.
Collapse
Affiliation(s)
- Saiful Iqbal Norazman
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Anis Syauqina Mohd Zaffarin
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh 47000, Malaysia
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Ima Nirwana Soleiman
- The Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Wong Sok Kuan
- The Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ekram Alias
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Reytor-González C, Parise-Vasco JM, González N, Simancas-Racines A, Zambrano-Villacres R, Zambrano AK, Simancas-Racines D. Obesity and periodontitis: a comprehensive review of their interconnected pathophysiology and clinical implications. Front Nutr 2024; 11:1440216. [PMID: 39171112 PMCID: PMC11335523 DOI: 10.3389/fnut.2024.1440216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Obesity and periodontitis are significant health problems with a complex bidirectional relationship. Excess body fat is linked to systemic diseases and can lead to persistent inflammation, potentially harming periodontal health. Periodontitis, a chronic inflammatory condition affecting the supporting structures of teeth, poses substantial health risks. Both conditions share pathological processes such as inflammation and oxidative stress, which aggravate health status and make treatment more challenging. Understanding this interaction is crucial for developing effective management strategies for both diseases. This study explores the multifaceted aspects of obesity and periodontitis and their reciprocal relationship.
Collapse
Affiliation(s)
- Claudia Reytor-González
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Juan Marcos Parise-Vasco
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Natali González
- Facultad de Odontología, Universidad UTE, Santo Domingo, Ecuador
| | - Alison Simancas-Racines
- Carrera de Medicina Veterinaria, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad Técnica de Cotopaxi, Latacunga, Ecuador
| | | | - Ana Karina Zambrano
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Daniel Simancas-Racines
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| |
Collapse
|
4
|
Zhang Y, Yan J, Zhang Y, Liu H, Han B, Li W. Age-related alveolar bone maladaptation in adult orthodontics: finding new ways out. Int J Oral Sci 2024; 16:52. [PMID: 39085217 PMCID: PMC11291511 DOI: 10.1038/s41368-024-00319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Compared with teenage patients, adult patients generally show a slower rate of tooth movement and more pronounced alveolar bone loss during orthodontic treatment, indicating the maladaptation of alveolar bone homeostasis under orthodontic force. However, this phenomenon is not well-elucidated to date, leading to increased treatment difficulties and unsatisfactory treatment outcomes in adult orthodontics. Aiming to provide a comprehensive knowledge and further inspire insightful understanding towards this issue, this review summarizes the current evidence and underlying mechanisms. The age-related abatements in mechanosensing and mechanotransduction in adult cells and periodontal tissue may contribute to retarded and unbalanced bone metabolism, thus hindering alveolar bone reconstruction during orthodontic treatment. To this end, periodontal surgery, physical and chemical cues are being developed to reactivate or rejuvenate the aging periodontium and restore the dynamic equilibrium of orthodontic-mediated alveolar bone metabolism. We anticipate that this review will present a general overview of the role that aging plays in orthodontic alveolar bone metabolism and shed new light on the prospective ways out of the impasse.
Collapse
Affiliation(s)
- Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Jiale Yan
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yuning Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
5
|
Döding A, Hüfner M, Nachtsheim F, Iffarth V, Bölter A, Bastian A, Symmank J, Andreas N, Schädel P, Thürmer M, Becker K, Wolf M, Jacobs C, Kamradt T, Koeberle A, Werz O, Sigusch B, Schulze-Späte U. Mediterranean diet component oleic acid increases protective lipid mediators and improves trabecular bone in a Porphyromonas gingivalis inoculation model. J Clin Periodontol 2023; 50:380-395. [PMID: 36384158 DOI: 10.1111/jcpe.13751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
AIM Therapeutic modulation of bacterial-induced inflammatory host response is being investigated in gingival inflammation and periodontal disease pathology. Therefore, dietary intake of the monounsaturated fatty acid (FA) oleic acid (OA (C18:1)), which is the main component of Mediterranean-style diets, and saturated FA palmitic acid (PA (C16:0)), which is a component of Western-style diets, was investigated for their modifying potential in an oral inoculation model of Porphyromonas gingivalis. MATERIALS AND METHODS Normal-weight C57BL/6-mice received OA- or PA-enriched diets (PA-ED, OA-ED, PA/OA-ED) or normal standard diet for 16 weeks and were inoculated with P. gingivalis/placebo (n = 12/group). Gingival inflammation, alveolar bone structure, circulating lipid mediators, and in vitro cellular response were determined. RESULTS FA treatment of P. gingivalis-lipopolysaccharide-incubated gingival fibroblasts (GFbs) modified inflammatory activation, which only PA exacerbated with concomitant TNF-α stimulation. Mice exhibited no signs of acute inflammation in gingiva or serum and no inoculation- or nutrition-associated changes of the crestal alveolar bone. However, following P. gingivalis inoculation, OA-ED improved oral trabecular bone micro-architecture and enhanced circulating pro-resolving mediators resolvin D4 (RvD4) and 4-hydroxydocosahexaenoic acid (4-HDHA), whereas PA-ED did not. In vitro experiments demonstrated significantly improved differentiation in RvD4- and 4-HDHA-treated primary osteoblast cultures and reduced the expression of osteoclastogenic factors in GF. Further, P. gingivalis infection of OA-ED animals led to a serum composition that suppressed osteoclastic differentiation in vitro. CONCLUSIONS Our results underline the preventive impact of Mediterranean-style OA-EDs by indicating their pro-resolving nature beyond anti-inflammatory properties.
Collapse
Affiliation(s)
- Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Mira Hüfner
- Department of Orthodontics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Franziska Nachtsheim
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Viktoria Iffarth
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Anna Bölter
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Asisa Bastian
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Judit Symmank
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| | | | - Patrick Schädel
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Maria Thürmer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Kathrin Becker
- Department of Orthodontics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Collin Jacobs
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| | | | - Andreas Koeberle
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany.,Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Oliver Werz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Bernd Sigusch
- Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| |
Collapse
|
6
|
Abu-Shawish G, Betsy J, Anil S. Is Obesity a Risk Factor for Periodontal Disease in Adults? A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12684. [PMID: 36231983 PMCID: PMC9566678 DOI: 10.3390/ijerph191912684] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 05/14/2023]
Abstract
There is inconclusive evidence about the link between the severity and prevalence of periodontitis in obese adults. Therefore, this systematic review aims to explore the possibility of significant evidence on the association between obesity and periodontitis and to determine the necessity to consider obesity as a risk factor for periodontitis. We followed the PRISMA protocol, and studies that met the eligibility criteria were included in this review. The risk of bias in individual studies was also evaluated. This review included 15 observational studies (9 cross-sectional studies, 2 case-control, and 4 cohort studies). The total study subjects from these studies were 6603 (males = 3432; females = 3171). Most studies showed a significant association between obesity and periodontitis. Among these studies, a few showed obese females to be at a higher risk, and one study found no association between obesity and periodontal disease at all. Based on the evidence obtained from this review, the body mass index (BMI) should be routinely assessed in patients to assess the risk for periodontal disease and to offer personalized management of periodontitis. Based on the findings of this review, we recommend the need to initiate awareness among clinicians and implement dental hygiene care prevention measures for obese patients.
Collapse
Affiliation(s)
- Ghadah Abu-Shawish
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, Qatar University, Doha 3050, Qatar
| | - Joseph Betsy
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, Qatar University, Doha 3050, Qatar
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre Thiruvalla, Pathanamthitta 689101, India
| |
Collapse
|
7
|
Yue Z, Nie L, Zhao P, Ji N, Liao G, Wang Q. Senescence-associated secretory phenotype and its impact on oral immune homeostasis. Front Immunol 2022; 13:1019313. [PMID: 36275775 PMCID: PMC9581398 DOI: 10.3389/fimmu.2022.1019313] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 09/09/2023] Open
Abstract
The senescence-associated secretory phenotype (SASP), which accumulates over the course of normal aging and in age-related diseases, is a crucial driver of chronic inflammation and aging phenotypes. It is also responsible for the pathogenesis of multiple oral diseases. However, the pathogenic mechanism underlying SASP has not yet been fully elucidated. Here, relevant articles on SASP published over the last five years (2017-2022) were retrieved and used for bibliometric analysis, for the first time, to examine SASP composition. More than half of the relevant articles focus on various cytokines (27.5%), growth factors (20.9%), and proteases (20.9%). In addition, lipid metabolites (13.1%) and extracellular vesicles (6.5%) have received increasing attention over the past five years, and have been recognized as novel SASP categories. Based on this, we summarize the evidences demonstrating that SASP plays a pleiotropic role in oral immunity and propose a four-step hypothetical framework for the progression of SASP-related oral pathology-1) oral SASP development, 2) SASP-related oral pathological alterations, 3) pathological changes leading to oral immune homeostasis disruption, and 4) SASP-mediated immune dysregulation escalating oral disease. By targeting specific SASP factors, potential therapies can be developed to treat oral and age-related diseases.
Collapse
Affiliation(s)
- Ziqi Yue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ga Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Information Management, Department of Stomatology Informatics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Zhao P, Xu A, Leung WK. Obesity, Bone Loss, and Periodontitis: The Interlink. Biomolecules 2022; 12:biom12070865. [PMID: 35883424 PMCID: PMC9313439 DOI: 10.3390/biom12070865] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity and periodontitis are both common health concerns that have given rise to considerable economic and societal burden worldwide. There are established negative relationships between bone metabolism and obesity, obesity and diabetes mellitus (DM), and DM and periodontitis, to name a few, with osteoporosis being considered a long-term complication of obesity. In the oral cavity, bone metabolic disorders primarily display as increased risks for periodontitis and alveolar bone loss. Obesity-driven alveolar bone loss and mandibular osteoporosis have been observed in animal models without inoculation of periodontopathogens. Clinical reports have also indicated a possible association between obesity and periodontitis. This review systematically summarizes the clinical periodontium changes, including alveolar bone loss in obese individuals. Relevant laboratory-based reports focusing on biological interlinks in obesity-associated bone remodeling via processes like hyperinflammation, immune dysregulation, and microbial dysbiosis, were reviewed. We also discuss the potential mechanism underlying obesity-enhanced alveolar bone loss from both the systemic and periodontal perspectives, focusing on delineating the practical considerations for managing periodontal disease in obese patients.
Collapse
Affiliation(s)
- Pengfei Zhao
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China;
| | - Aimin Xu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China;
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China;
- Correspondence: ; Tel.: +852-2859-0417
| |
Collapse
|
9
|
Lopes MES, Marcantonio CC, de Molon RS, Cerri PS, Salmon CR, Mofatto LS, Nociti Junior FH, Deschner J, Cirelli JA, Nogueira AVB. Obesity influences the proteome of periodontal ligament tissues following periodontitis induction in rats. J Periodontal Res 2022; 57:545-557. [PMID: 35246839 DOI: 10.1111/jre.12983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Many studies have been conducted to better understand the molecular mechanism involved with periodontitis progression. There has been growing interest in the potential impact of obesity on periodontitis onset and progression, but the mechanisms involved remain to be elucidated. The present study was designed to determine the impact of obesity on experimentally induced periodontitis in rats and identify novel pathways involved. METHODS Sixteen Holtzman rats were distributed into two groups (n = 8): ligature-induced periodontitis (P) and obesity plus ligature-induced periodontitis (OP). Obesity was induced by a high-fat diet for 70 days, whereas periodontitis was induced for 20 days, with a cotton thread placed around the upper first molars bilaterally. Alveolar bone loss was measured by microtomographic analysis and histologically by histometry on the hemimaxillae. The protein composition of the periodontal ligament was evaluated by proteomic analysis. RESULTS Data analysis (body weight, adipose tissue weight, and blood test) confirmed obesity induction, whereas bone loss was confirmed by micro-CT and histologic analyses. Proteome analysis from the periodontal ligament tissues (PDL) identified 819 proteins, 53 exclusive to the P group, 28 exclusive to the OP group, and 738 commonly expressed. Validation was performed by immunohistochemistry for selected proteins (spondin1, vinculin, and TRAP). CONCLUSION Histologically, it was found that obesity did not significantly affect bone loss resulting from periodontitis. However, the present study's findings indicated that obesity affects the proteome of PDL submitted to experimental periodontitis, allowing for identifying potential targets for personalized approaches.
Collapse
Affiliation(s)
- Maria Eduarda Scordamaia Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Camila Chierici Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Rafael Scaf de Molon
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Paulo Sérgio Cerri
- Department of Morphology, School of Dentistry at Araraquara, São Paulo State University, Araraquara, Brazil
| | - Cristiane Ribeiro Salmon
- Division of Periodontics, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Luciana Souto Mofatto
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Francisco Humberto Nociti Junior
- Division of Periodontics, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil.,São Leopoldo Mandic Research Center, Campinas, Brazil
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Andressa Vilas Boas Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil.,Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
10
|
ArefNezhad R, Motedayyen H, Roghani-Shahraki H. Do cytokines associate periodontitis with metabolic disorders? An overview of current documents. Endocr Metab Immune Disord Drug Targets 2022; 22:778-786. [PMID: 35043774 DOI: 10.2174/1871530322666220119112026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
Periodontitis is an oral chronic inflammatory condition affecting the adult population worldwide. Many microorganisms act as an initiator for induction of inflammatory immune responses, which participate in the destruction of connective tissue surrounding the teeth and thereby result in tooth loss. Cytokines may have indispensable roles in its pathogenesis through enhancing inflammatory and immune responses. Cytokines can affect functions of some cells of different tissues, such as the cells of the pancreas, liver, and adipose tissues. There is evidence that periodontitis is associated with metabolic disorders, like liver cirrhosis, obesity, and diabetes mellitus. Hence, this review was focused on determining how cytokines can participate in the correlation of periodontitis with metabolic disorders.
Collapse
Affiliation(s)
- Reza ArefNezhad
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | |
Collapse
|
11
|
Jekl V, Brinek A, Zikmund T, Jeklova E, Kaiser J. Use of Micro-CT Imaging to Assess Ventral Mandibular Cortical Thickness and Volume in an Experimental Rodent Model With Chronic High-Phosphorus Intake. Front Vet Sci 2021; 8:759093. [PMID: 34957278 PMCID: PMC8695870 DOI: 10.3389/fvets.2021.759093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Adverse effects of high dietary phosphorus on bone health have been observed in both animal and human studies. The aim of the investigation was to examine chronic effects of high phosphorus diet on the apical mandibular cortical thickness and volume in a hystricomorph rodent (Octodon degus) using microcomputed tomography. Male degus were randomly divided into two groups fed by different mineral contents from the age of 12 weeks till the age of 17 months. The micro-CT scanning and wall thickness analysis were applied on the region of the mandible exactly under the apices of the 4th premolar tooth, first molar tooth, and second molar tooth in two animals from each group. General overview and mapping of the ventral mandibular bone thickness revealed pronounced bony mandibular protrusions in all the animals fed a high-phosphorus diet with obvious bone thinning apically to the 4th premolar and first and second molar tooth apices. Mandibular bone volume and thickness located apically to the premolar and molars were statistically significantly smaller/thinner in the group fed by a high phosphorus diet. The thinnest bone measured 0.004 mm, where the mandibular 4th premolar tooth almost perforated the mandibular cortex. Similar studies of metabolic bone disease and its influence on alveolar bone were also published in rats and mice. The influence of different environmental, infectious, or metabolic factors on the growing tooth, alveolar bone formation, and bone pathologies must be done experimentally on growing animals. In contrast, degus have continuously growing dentition, and the effect of any of the above listed factors can be studied in this animal model at any age and for longer time periods.
Collapse
Affiliation(s)
- Vladimir Jekl
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, Veterinary University Brno, Brno, Czechia.,Jekl & Hauptman Veterinary Clinic, Brno, Czechia
| | - Adam Brinek
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Tomas Zikmund
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Edita Jeklova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, v.v.i., Brno, Czechia
| | - Josef Kaiser
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| |
Collapse
|
12
|
Effects of Obesity on Bone Healing in Rats. Int J Mol Sci 2021; 22:ijms222413339. [PMID: 34948136 PMCID: PMC8704371 DOI: 10.3390/ijms222413339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Although the association between periodontitis and obesity is well explored, it is unclear whether obesity is associated with a worse therapeutic outcome after periodontal treatment. The aim of this study was to investigate the effects of obesity on bone healing with and without the application of regeneration-promoting molecules. A standardized bone fenestration-type defect was created over the root of the mandibular first molar in 15 Wistar rats. Ten animals received a high-fat, high-sucrose diet (HFSD), while the remaining five animals were fed a standard diet. During surgery, the fenestration defects from half of the HFSD-fed, i.e., obese animals, were treated with regeneration-promoting molecules (enamel matrix derivative; EMD). After four weeks, bone healing was evaluated by histomorphometry, TRAP staining and immunohistochemistry for RUNX2 and osteopontin. The analyses revealed that the spontaneous healing of the periodontal defects was compromised by obesity. Application of EMD partially compensated for the negative effect of obesity. Nevertheless, EMD-stimulated bone healing in obese animals was not better than the spontaneous healing in the obesity-free control group, indicating that obesity may also inhibit the stimulatory effects of regeneration-promoting molecules. Our results show that obesity can negatively influence bone healing and suggest that bone healing may be compromised in humans.
Collapse
|
13
|
Kirschneck C, Wolf F, Cieplik F, Blanck-Lubarsch M, Proff P, Schröder A. Impact of NSAID etoricoxib on side effects of orthodontic tooth movement. Ann Anat 2020; 232:151585. [PMID: 32818660 DOI: 10.1016/j.aanat.2020.151585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/03/2020] [Accepted: 07/22/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVES The non-steroidal anti-inflammatory drug etoricoxib is the most highly selective inhibitor of cyclooxygenase-2 available (344:1) and has been approved for postoperative pain therapy following dental interventions in Europe. At clinically relevant doses it has been reported to only have marginal effects on the velocity of orthodontic tooth movement (OTM). Its effects on associated dental root resorptions, osteoclastogenesis, trabecular number in the alveolar bone and periodontal bone loss during OTM, however, have not yet been investigated. MATERIAL AND METHODS 40 male Fischer344 rats were divided into four groups: 1.5ml tap water/day p.o. (control, 1), additional 7.8mg/kg/day etoricoxib (normal dose) for three (2) or seven (3) days/week and 13.1mg/kg/day (high dose) for seven days/week, respectively (4). After a week of premedication, OTM in anterior direction of the first left upper molar was performed for 28 days by means of a nickel-titanium coil spring (0.25N). We quantified OTM-associated dental root resorptions, osteoclastogenesis, trabecular number and periodontal bone loss by histomorphometrical, histochemical and μCT analyses of the disected tooth-bearing upper jaw sections. RESULTS After 28 days of OTM, associated reduction of trabecular number seemed to be slightly alleviated by high doses of etoricoxib, whereas no significant other etoricoxib effects in the doses administered could be detected regarding OTM-induced or -associated dental root resorptions, osteoclastogenesis or periodontal bone loss. CONCLUSIONS Dental root resorptions, osteoclastogenesis and periodontal bone loss during OTM in rats were not significantly affected by etoricoxib in the clinically relevant dosages investigated with only a slight inhibitory effect on bone remodelling to be expected at high dosages. Etoricoxib is therefore not suitable for the prevention of these detrimental effects, but could be a suitable analgesic during OTM, as it has been reported not to affect tooth movement.
Collapse
Affiliation(s)
| | - Franziska Wolf
- Department of Orthodontics, University Hospital Regensburg, Germany
| | - Fabian Cieplik
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Germany
| | | | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, Germany
| |
Collapse
|
14
|
Ok CY, Park S, Jang HO, Takata T, Bae MK, Kim YD, Ryu MH, Bae SK. Visfatin Induces Senescence of Human Dental Pulp Cells. Cells 2020; 9:cells9010193. [PMID: 31940881 PMCID: PMC7017355 DOI: 10.3390/cells9010193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Dental pulp plays an important role in the health of teeth. The aging of teeth is strongly related to the senescence of dental pulp cells. A novel adipokine, visfatin, is closely associated with cellular senescence. However, little is known about the effect of visfatin on the senescence of human dental pulp cells (hDPCs). Here, it was found that in vivo visfatin levels in human dental pulp tissues increase with age and are upregulated in vitro in hDPCs during premature senescence activated by H2O2, suggesting a correlation between visfatin and senescence. In addition, visfatin knockdown by small interfering RNA led to the reduction in hDPC senescence; however, treatment with exogenous visfatin protein induced the senescence of hDPCs along with increased NADPH consumption, which was reversed by FK866, a chemical inhibitor of visfatin. Furthermore, visfatin-induced senescence was associated with both the induction of telomere damage and the upregulation of senescence-associated secretory phenotype (SASP) factors as well as NF-κB activation, which were all inhibited by FK866. Taken together, these results demonstrate, for the first time, that visfatin plays a pivotal role in hDPC senescence in association with telomere dysfunction and the induction of SASP factors.
Collapse
Affiliation(s)
- Chang Youp Ok
- Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (C.Y.O.); (S.P.); (H.-O.J.)
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (M.-K.B.); (Y.-D.K.)
| | - Sera Park
- Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (C.Y.O.); (S.P.); (H.-O.J.)
| | - Hye-Ock Jang
- Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (C.Y.O.); (S.P.); (H.-O.J.)
| | | | - Moon-Kyoung Bae
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (M.-K.B.); (Y.-D.K.)
- Department of Oral Physiology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Yong-Deok Kim
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (M.-K.B.); (Y.-D.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Mi Heon Ryu
- Department of Oral Pathology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea;
| | - Soo-Kyung Bae
- Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (C.Y.O.); (S.P.); (H.-O.J.)
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (M.-K.B.); (Y.-D.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Correspondence: ; Tel.: +82-51-510-8253
| |
Collapse
|
15
|
Eaimworawuthikul S, Tunapong W, Chunchai T, Suntornsaratoon P, Charoenphandhu N, Thiennimitr P, Chattipakorn N, Chattipakorn SC. Altered gut microbiota ameliorates bone pathology in the mandible of obese-insulin-resistant rats. Eur J Nutr 2019; 59:1453-1462. [PMID: 31123863 DOI: 10.1007/s00394-019-02002-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE The chronic consumption of a high-fat diet (HFD) induces obese-insulin resistance and impairs jawbone health via gut dysbiosis-stimulated inflammatory process. Our previous studies demonstrated that the probiotic Lactobacillus paracasei HII01, prebiotic xylooligosaccharide (XOS), and synbiotics improved several vital organ functions by reducing gut dysbiosis in HFD-induced obese rats. However, the impacts on the cellular level of jawbone microarchitecture have not been examined. Here, we hypothesized that the supplementation of L. paracasei HII01, XOS, and synbiotics ameliorated the bone microarchitectural pathology in HFD-fed rats by reducing systemic inflammation and other metabolic parameters. METHODS The dietary regimes (normal or high-fat diet) were provided to 48 male Wistar rats throughout 24-week experiment. After week 12, rats were given either a vehicle, pro-, pre-, or synbiotic for an additional 12 weeks before being killed. Then, blood analyses and bone histomorphometry of the jawbones were performed. RESULTS The HFD-fed rats developed obese-insulin resistance with significantly elevated systemic inflammation. Bone histomorphometry of these rats showed a decrease in trabecular thickness with increased osteoclasts and active erosion surfaces. Mineral apposition and bone-formation rates were also remarkably diminished. The treatment with pro-, pre-, and synbiotics equally improved metabolic disturbance, reduced systemic inflammation, increased trabecular thickness, decreased osteoclasts and active erosion surfaces and restored mineral apposition and bone-formation rates. CONCLUSION The probiotic L. paracasei HII01, prebiotic XOS, and the synbiotics had similarly beneficial effects to improve jawbone microarchitecture in HFD-fed rats by possibly ameliorating osteoclast-related bone resorption and potentiating bone-formation activities.
Collapse
Affiliation(s)
- Sathima Eaimworawuthikul
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.,Neurophysiology Unit, Center of Excellence in Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wannipa Tunapong
- Neurophysiology Unit, Center of Excellence in Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Center of Excellence in Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Panan Suntornsaratoon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10300, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Center of Excellence in Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Neurophysiology Unit, Center of Excellence in Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
16
|
Regulation of tyrosine hydroxylase in periodontal fibroblasts and tissues by obesity-associated stimuli. Cell Tissue Res 2018; 375:619-628. [PMID: 30361782 DOI: 10.1007/s00441-018-2941-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of catecholamines and has been connected to aggravated progression of periodontal disease under chronic stress. Obesity is known to increase the risk of periodontitis and adipokines have been suggested to be a pathomechanistic link. This study examines if obesity-associated stimuli have regulatory effects on TH levels in periodontal cells and tissues. Human periodontal ligament fibroblasts were cultured in the presence of leptin or visfatin for up to 2 days. Untreated cells served as control. TH regulation was analyzed by real-time PCR, immunocytochemistry and ELISA. TH gene expression in periodontal tissues of normal-weight and obese rodents was determined. Examination of gingival biopsies from rats and patients with and without periodontal disease was performed by real-time PCR or immunohistochemistry. For statistics, ANOVA and post hoc tests were applied (p < 0.05). In vitro, TH gene expression and protein levels were increased by leptin and visfatin. In vivo, TH gene expression was upregulated in periodontal tissues of obese rodents as compared to normal-weight animals. Additionally, increased TH gene expression was found in rat gingival biopsies with experimental periodontitis. Human gingival biopsies from sites of periodontitis confirmed the animal data by demonstrating elevated TH levels at periodontally diseased sites. This study provides original evidence that obesity-associated stimuli induce a TH upregulation in periodontal cells and tissues. Since TH levels were also increased at periodontitis sites, our in vitro and animal findings suggest that this enzyme could represent a pathomechanism whereby obesity contributes to periodontitis.
Collapse
|