1
|
Stewart A. Bridging the gap: Using biological data from teeth to comment on social identity of archeological populations from early Anglo-Saxon, England. Ann Anat 2021; 240:151876. [PMID: 34890784 DOI: 10.1016/j.aanat.2021.151876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
Human teeth are storytellers, in that, through analysis of their size and shape osteoarchaeologists are able to 'talk' to the dead and translate biological data into social meaning. This concept has been explored in parts of the world through investigations of biological similarity and kinship, but few have focused in depth on early medieval populations who emphasized the importance of family and kinship. This paper presents the results from four early Anglo-Saxon cemeteries which highlight the utility of dental metrics in identifying biological similarity within the skeletal assemblages. 5988 mesiodistal and buccolingual measurements were recorded from the identifiable permanent dentition of adult individuals from early Anglo-Saxon cemeteries in the UK counties of Cambridgeshire and Kent. Results from statistical hierarchical cluster analysis of dental metric data revealed that it was possible to identify individuals within the cemetery sites that were more similar to one another according to their dental metrics. This similarity was not attributed statistically to biological sex or shared familial environment, as similarity between individuals could be found between males and females and few significant differences were found across the sites sampled. It was found that tooth metrics provided a meaningful biological dataset from which current theories regarding the identity of Anglo-Saxon individuals and families could be refined and improved. These types of data are useful as building blocks which help to bridge the gap between social constructs and human skeletal remains in order to substantiate interpretations about past populations in more significant ways. This work supports the need for multidisciplinary approaches to bioarchaeological investigations of past people while highlighting the utility of human dentition to enhance such areas of study.
Collapse
|
2
|
Bimodal expression of Wnt5a in the tooth germ: A comparative study using in situ hybridization and immunohistochemistry. Ann Anat 2021; 240:151868. [PMID: 34823012 DOI: 10.1016/j.aanat.2021.151868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND During tooth development, Wnt5a, a member of the noncanonical Wnt ligand, is expressed prominently in the dental mesenchyme. However, the spatiotemporal profiles of Wnt5a protein production and distribution in tooth germs are largely unknown, which impairs elucidation of the Wnt5a-mediated regulatory mechanism of tooth development. METHODS We performed analyzes of the spatiotemporal expression of Wnt5a in embryonic tooth germs (E11.5-E18.5) by using in situ hybridization and immunohistochemistry in parallel. The developmental stages of the embryonic tooth germs were determined by HE staining. In order to compare the spatiotemporal distribution patterns of Wnt5a mRNA-expressing cells and those of Wnt5a protein-expressing cells, serial frontal sections of paraffinized mouse embryo heads were used for the analyzes. When needed, the immunohistochemistry images were subjected to digital detection analysis of Wnt5a immunostaining signal using the WinROOF 2018 Ver. 4.19.0 image processing software program. RESULTS Throughout the developmental process, cells expressing Wnt5a mRNA were found in various tissues including the dental follicle, dental papilla, inner and outer enamel epithelium, stratum intermediate, and stellate reticulum. However, odontoblasts differentiating and polarizing at E18.5 were the only cells representing an accumulation of Wnt5a protein in the apical region of the odontoblast process. The Wnt5a protein was undetectable in undifferentiated mesenchymal cells as well as any other cells positive for Wnt5a mRNA. CONCLUSION Differentiating odontoblasts execute Wnt5a expression, the mode of which is distinct from that executed by the other cells constituting tooth germ. Change of the mode of Wnt5a expression begins to take place in the mesenchymal cells by E18.5, starting the elongation of the cytoplasmic process.
Collapse
|
3
|
Altaie AM, Venkatachalam T, Samaranayake LP, Soliman SSM, Hamoudi R. Comparative Metabolomics Reveals the Microenvironment of Common T-Helper Cells and Differential Immune Cells Linked to Unique Periapical Lesions. Front Immunol 2021; 12:707267. [PMID: 34539639 PMCID: PMC8446658 DOI: 10.3389/fimmu.2021.707267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Periapical abscesses, radicular cysts, and periapical granulomas are the most frequently identified pathological lesions in the alveolar bone. While little is known about the initiation and progression of these conditions, the metabolic environment and the related immunological behaviors were examined for the first time to model the development of each pathological condition. Metabolites were extracted from each lesion and profiled using gas chromatography-mass spectrometry in comparison with healthy pulp tissue. The metabolites were clustered and linked to their related immune cell fractions. Clusters I and J in the periapical abscess upregulated the expression of MMP-9, IL-8, CYP4F3, and VEGF, while clusters L and M were related to lipophagy and apoptosis in radicular cyst, and cluster P in periapical granuloma, which contains L-(+)-lactic acid and ethylene glycol, was related to granuloma formation. Oleic acid, 17-octadecynoic acid, 1-nonadecene, and L-(+)-lactic acid were significantly the highest unique metabolites in healthy pulp tissue, periapical abscess, radicular cyst, and periapical granuloma, respectively. The correlated enriched metabolic pathways were identified, and the related active genes were predicted. Glutamatergic synapse (16–20),-hydroxyeicosatetraenoic acids, lipophagy, and retinoid X receptor coupled with vitamin D receptor were the most significantly enriched pathways in healthy control, abscess, cyst, and granuloma, respectively. Compared with the healthy control, significant upregulation in the gene expression of CYP4F3, VEGF, IL-8, TLR2 (P < 0.0001), and MMP-9 (P < 0.001) was found in the abscesses. While IL-12A was significantly upregulated in cysts (P < 0.01), IL-17A represents the highest significantly upregulated gene in granulomas (P < 0.0001). From the predicted active genes, CIBERSORT suggested the presence of natural killer cells, dendritic cells, pro-inflammatory M1 macrophages, and anti-inflammatory M2 macrophages in different proportions. In addition, the single nucleotide polymorphisms related to IL-10, IL-12A, and IL-17D genes were shown to be associated with periapical lesions and other oral lesions. Collectively, the unique metabolism and related immune response shape up an environment that initiates and maintains the existence and progression of these oral lesions, suggesting an important role in diagnosis and effective targeted therapy.
Collapse
Affiliation(s)
- Alaa Muayad Altaie
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Lakshman P Samaranayake
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Oral Biosciences, Faculty of Dentistry, University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
4
|
Cell Differentiation and Replication during Postnatal Development of the Murine First Molar. BIOLOGY 2021; 10:biology10080776. [PMID: 34440008 PMCID: PMC8389692 DOI: 10.3390/biology10080776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary Teeth are necessary to prepare food for swallowing. The process of teeth development before and after birth may be studied in normal mice and also by reproducing diseases or genetic conditions. However, mice teeth are different from human teeth, since mice have only permanent teeth. Moreover, their incisors continue to grow for the whole lifespan. Hence, it is important to know how the mouse teeth develop. We studied the development of the first molar in mice from birth to weaning and showed that dividing cells are located in a different part of the developing tooth according to age. Abstract Various signaling molecular pathways are involved in odontogenesis to promote cellular replication and differentiation. Tooth formation is controlled mainly by epithelial–mesenchymal interactions. The aim of this work was to investigate how cellular replication and differentiation ensue during the formation of the murine first molar in postnatal ages until eruption, focusing on morphogenesis, odontoblast differentiation and cellular replication. Wild-type CD1 mice were examined from birth to weaning. Morphogenesis and interaction between developing epithelial and mesenchymal tissues were evaluated in hematoxylin–eosin and Gomori trichome stained sections. Immunohistochemistry for nestin, which mediates the differentiation of odontoblasts, especially their polarization and elongation, showed that this intermediate filament was apparent already at postnatal day P1 in the apical region of odontoblasts and progressed apically from cusp tips, while it was not present in epithelial tissues. The expression of nuclear antigen Ki-67 highlighted dividing cells in both epithelial and mesenchymal tissues at P1, while one week later they were restricted to the cementoenamel junction, guiding root elongation. The link between odontoblast maturation and cellular replication in the different tooth tissues is essential to understand the development of tooth shape and dimension, to outline mechanisms of tooth morphogenesis and possibly eruption.
Collapse
|