1
|
Trumble TN. Clinical insights: Upper appendicular, pelvic and axial skeletal pathology with poor performance. Equine Vet J 2025; 57:5-10. [PMID: 39630606 DOI: 10.1111/evj.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
|
2
|
Malekipour F, Whitton RC, Lee PVS. Advancements in Subchondral Bone Biomechanics: Insights from Computed Tomography and Micro-Computed Tomography Imaging in Equine Models. Curr Osteoporos Rep 2024; 22:544-552. [PMID: 39276168 PMCID: PMC11499365 DOI: 10.1007/s11914-024-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
PURPOSE OF REVIEW This review synthesizes recent advancements in understanding subchondral bone (SCB) biomechanics using computed tomography (CT) and micro-computed tomography (micro-CT) imaging in large animal models, particularly horses. RECENT FINDINGS Recent studies highlight the complexity of SCB biomechanics, revealing variability in density, microstructure, and biomechanical properties across the depth of SCB from the joint surface, as well as at different joint locations. Early SCB abnormalities have been identified as predictive markers for both osteoarthritis (OA) and stress fractures. The development of standing CT systems has improved the practicality and accuracy of live animal imaging, aiding early diagnosis of SCB pathologies. While imaging advancements have enhanced our understanding of SCB, further research is required to elucidate the underlying mechanisms of joint disease and articular surface failure. Combining imaging with mechanical testing, computational modelling, and artificial intelligence (AI) promises earlier detection and better management of joint disease. Future research should refine these modalities and integrate them into clinical practice to enhance joint health outcomes in veterinary and human medicine.
Collapse
Affiliation(s)
- Fatemeh Malekipour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - R Chris Whitton
- Equine Centre, Department of Veterinary Clinical Sciences, University of Melbourne, Werribee, VIC, 3030, Australia
| | - Peter Vee-Sin Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
3
|
Ishii D, Sato S, Fujie H. Dynamic Deformation Behavior of the Porcine Anterior Cruciate Ligament Enthesis Under Anterior Tibial Loading. Ann Biomed Eng 2024:10.1007/s10439-024-03654-2. [PMID: 39604621 DOI: 10.1007/s10439-024-03654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
This study determined the insertion angle at the porcine anterior cruciate ligament (ACL) enthesis under joint loading to provide information on the structure and mechanical function of the enthesis. Ten intact porcine knee joints were harvested, and an anterior tibial load was applied using a robotic testing system. After dissecting a portion of the ACL enthesis along ligament fibers, the remaining enthesis was imaged using a digital microscope while reproducing the three-dimensional intact knee motion. Fiber orientation angles (FOAs) in the enthesis region (0-300 µm from the ligament-bone boundary) and the ligament region (500-2000 µm from the ligament-bone boundary) were analyzed in the femoral and tibial entheses of the anteromedial bundle (AMB) of the ACL under loading. On the femoral side, the FOA in the enthesis region was significantly higher than that in the ligament region by approximately 10 degrees under loading (n = 5, p < 0.05 in paired t-test). In contrast, the FOAs in the enthesis and ligament regions on the tibial side were nearly equal under loading, with no significant difference (n = 5, p > 0.15 in paired t-test). Histological examination indicated that uncalcified fibrocartilage (UF) was abundant in the enthesis region of the AMB femoral enthesis while the UF was not observed in the enthesis region of the AMB tibial enthesis. Thus, the current data suggest that the regional dependence and independence in FOA are caused by the presence or absence of UF and contributes to a moderate and subtle load-transduction in the ACL enthesis.
Collapse
Affiliation(s)
- Daichi Ishii
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan.
| | - Shiho Sato
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Hiromichi Fujie
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan.
| |
Collapse
|
4
|
Semitela A, Marques PAAP, Completo A. Strategies to engineer articular cartilage with biomimetic zonal features: a review. Biomater Sci 2024; 12:5961-6005. [PMID: 39463257 DOI: 10.1039/d4bm00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Articular cartilage (AC) is a highly specialized tissue with restricted ability for self-regeneration, given its avascular and acellular nature. Although a considerable number of surgical treatments is available for the repair, reconstruction, and regeneration of AC defects, most of them do not prioritize the development of engineered cartilage with zonal stratification derived from biomimetic biochemical, biomechanical and topographic cues. In the absence of these zonal elements, engineered cartilage will exhibit increased susceptibility to failure and will neither be able to withstand the mechanical loading to which AC is subjected nor will it integrate well with the surrounding tissue. In this regard, new breakthroughs in the development of hierarchical stratified engineered cartilage are highly sought after. Initially, this review provides a comprehensive analysis of the composition and zonal organization of AC, aiming to enhance our understanding of the significance of the structure of AC for its function. Next, we direct our attention towards the existing in vitro and in vivo studies that introduce zonal elements in engineered cartilage to elicit appropriate AC regeneration by employing tissue engineering strategies. Finally, the advantages, challenges, and future perspectives of these approaches are presented.
Collapse
Affiliation(s)
- Angela Semitela
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Paula A A P Marques
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - António Completo
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Choi K. Correlation Between Hyperlipidemia-Related Diseases and Thorax/Thigh Circumference Ratio Along with Body Condition Score in Dogs Focusing on Molecular Mechanism: A Pilot Study and Literature Review. Life (Basel) 2024; 14:1441. [PMID: 39598239 PMCID: PMC11595692 DOI: 10.3390/life14111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
There are some limitations to using the body condition score (BCS) for client education to prevent obesity, hyperlipidemia-related diseases, and orthopedic diseases in dogs because it is hard to quantify in detail. Especially in small dogs, patellar luxation is a common orthopedic disease that is related to obesity and the hind leg muscle. In this pilot study, the author evaluated the thorax/thigh circumference ratio as a prognostic evaluation index, along with the BCS, for assessing patellar dislocation and other hyperlipidemia-related diseases and states such as hypertriglyceridemia and obesity-related orthopedic disease in small dogs. Eleven client-owned dogs were selected randomly among patients that visited Bundang New York Animal Hospital, South Korea from June 2021 to August 2024. According to the results, triglycerides (TG) showed a negative correlation with thorax/thigh value (R = -0.585, p-value = 0.059) and a strong positive correlation with thigh circumference (R = 0.749, p-value = 0.008). Total cholesterol (TC) showed a strong positive correlation with thigh circumference (R = 0.776, p-value = 0.005), whereas the thorax/thigh value showed a negative correlation with the medial patella luxation (MPL) grade with low significance (R = -0.343, p-value = 0.302). These data indicate that thigh circumference can be an excellent negative indicator for hyperlipidemia and thorax/thigh value shows no correlation with medial patella luxation, which has many factors such as varus and trochlear groove. Despite the limitations of this study due to the small sample size, this pilot study is significant as it is the first trial to introduce a new indicator for monitoring hyperlipidemia at home by using a simple tape measure. Also, the author reviews molecular pathways including the ApoA-1, ApoE, and LPL genes, which are related to hyperlipidemia, to explain the results.
Collapse
Affiliation(s)
- Kyuhyung Choi
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; or
- Bundang New York Animal Hospital, Seongnam 13637, Republic of Korea
| |
Collapse
|
6
|
Oláh T, Cucchiarini M, Madry H. Temporal progression of subchondral bone alterations in OA models involving induction of compromised meniscus integrity in mice and rats: A scoping review. Osteoarthritis Cartilage 2024; 32:1220-1234. [PMID: 38876436 DOI: 10.1016/j.joca.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE To categorize the temporal progression of subchondral bone alterations induced by compromising meniscus integrity in mouse and rat models of knee osteoarthritis (OA). METHOD Scoping review of investigations reporting subchondral bone changes with appropriate negative controls in the different mouse and rat models of OA induced by compromising meniscus integrity. RESULTS The available literature provides appropriate temporal detail on subchondral changes in these models, covering the entire spectrum of OA with an emphasis on early and mid-term time points. Microstructural changes of the subarticular spongiosa are comprehensively described; those of the subchondral bone plate are not. In mouse models, global subchondral bone alterations are unidirectional, involving an advancing sclerosis of the trabecular structure over time. In rats, biphasic subchondral bone alterations begin with an osteopenic degeneration and loss of subchondral trabeculae, progressing to a late sclerosis of the entire subchondral bone. Rat models, independently from the applied technique, relatively faithfully mirror the early bone loss detected in larger animals, and the late subchondral bone sclerosis observed in human advanced OA. CONCLUSION Mice and rats allow us to study the microstructural consequences of compromising meniscus integrity at high temporal detail. Thickening of the subchondral bone plate, an early loss of thinner subarticular trabecular elements, followed by a subsequent sclerosis of the entire subchondral bone are all important and reliable hallmarks that occur in parallel with the advancing articular cartilage degeneration. Thoughtful decisions on the study design, laterality, selection of controls and volumes of interest are crucial to obtain meaningful data.
Collapse
Affiliation(s)
- Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| |
Collapse
|
7
|
Chen J, Xu H, Zhou H, Wang Z, Li W, Guo J, Zhou Y. Knowledge mapping and bibliometric analysis of medical knee magnetic resonance imaging for knee osteoarthritis (2004-2023). Front Surg 2024; 11:1387351. [PMID: 39345660 PMCID: PMC11427760 DOI: 10.3389/fsurg.2024.1387351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Objectives Magnetic resonance imaging (MRI) is increasingly used to detect knee osteoarthritis (KOA). In this study, we aimed to systematically examine the global research status on the application of medical knee MRI in the treatment of KOA, analyze research hotspots, explore future trends, and present results in the form of a knowledge graph. Methods The Web of Science core database was searched for studies on medical knee MRI scans in patients with KOA between 2004 and 2023. CiteSpace, SCImago Graphica, and VOSviewer were used for the country, institution, journal, author, reference, and keyword analyses. Results A total of 2,904 articles were included. The United States and Europe are leading countries. Boston University is the main institution. Osteoarthritis and cartilage is the main magazine. The most frequently cocited article was "Radiological assessment of osteoarthrosis". Guermazi A was the author with the highest number of publications and total references. The keywords most closely linked to MRI and KOA were "cartilage", "pain", and "injury". Conclusions The application of medical knee MRI in KOA can be divided into the following parts: (1). MRI was used to assess the relationship between the characteristics of local tissue damage and pathological changes and clinical symptoms. (2).The risk factors of KOA were analyzed by MRI to determine the early diagnosis of KOA. (3). MRI was used to evaluate the efficacy of multiple interventions for KOA tissue damage (e.g., cartilage defects, bone marrow edema, bone marrow microfracture, and subchondral bone remodeling). Artificial intelligence, particularly deep learning, has become the focus of research on MRI applications for KOA.
Collapse
Affiliation(s)
- Juntao Chen
- College of Acupuncture and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hui Xu
- College of Acupuncture and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
- Tuina Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hang Zhou
- College of Acupuncture and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zheng Wang
- College of Acupuncture and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wanyu Li
- College of Acupuncture and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
| | - Juan Guo
- College of Acupuncture and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunfeng Zhou
- College of Acupuncture and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
- Tuina Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
8
|
Mazy D, Lu D, Leclerc S, Laor B, Wang J, Pinvicy A, Moldovan F, Nault ML. Animal models used in meniscal repair research from ex vivo to in vivo: A systematic review. J Orthop 2024; 55:23-31. [PMID: 38638113 PMCID: PMC11021913 DOI: 10.1016/j.jor.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
This systematic review, registered with Prospero, aims to identify an optimal animal model for meniscus repair research, moving from ex vivo experimentation to in vivo studies. Data sources included PubMed, Medline, all Evidence-Based Medicine Reviews, Web of Science, and Embase searched in March 2023. Studies were screened using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Extracted data including animal model, type of experiment, type of tear, surgical techniques, and measured outcomes, were recorded, reviewed, and analyzed by four independent reviewers. The SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) Rob tool was used for critical appraisal and risk of bias assessment. Out of 11,719 studies, 72 manuscripts were included for data extraction and analysis; 41 ex vivo extra-articular studies, 20 ex vivo intra-articular studies, and only 11 in vivo studies. Six animal models were employed: porcine, bovine, lapine, caprine, canine, and ovine. Longitudinal lesions were the most frequently studied tear pattern and sutures the most common repair technique. Studied outcomes focused mainly on biomechanical assessments and gross observations. This systematic review can guide researchers in their choice of animal model for meniscus repair research; it highlighted the strengths of the porcine, caprine, and bovine models for ex vivo cadaveric studies, while the porcine and caprine models were found to be more suited to in vivo studies due to their similarities with human anatomy. Research teams should familiarize themselves with the advantages and disadvantages of various animal models before initiating protocols to improve standardization in the field.
Collapse
Affiliation(s)
- David Mazy
- CHU Sainte-Justine, 7905-3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Department of Surgery, Université de Montréal, 2900 boul. Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Daisy Lu
- CHU Sainte-Justine Azrieli Research Center, 7905-3175 Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| | - Sebastien Leclerc
- CHU Sainte-Justine Azrieli Research Center, 7905-3175 Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| | - Boaz Laor
- Faculty of Medecine, McGill university, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| | - Jessica Wang
- CHU Sainte-Justine Azrieli Research Center, 7905-3175 Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| | - Alix Pinvicy
- CHU Sainte-Justine, 7905-3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Florina Moldovan
- CHU Sainte-Justine Azrieli Research Center, 7905-3175 Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| | - Marie-Lyne Nault
- CHU Sainte-Justine, 7905-3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Department of Surgery, Université de Montréal, 2900 boul. Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada
- CIUSSS Hôpital du Sacré-Cœur de Montréal (HSCM), Department of Orthopedic surgery, 5400 boul. Gouin Ouest, Montreal, QC, H4J 1C5, Canada
| |
Collapse
|
9
|
Peifer C, Oláh T, Venkatesan JK, Goebel L, Orth P, Schmitt G, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M, Madry H. Locally Directed Recombinant Adeno- Associated Virus-Mediated IGF-1 Gene Therapy Enhances Osteochondral Repair and Counteracts Early Osteoarthritis In Vivo. Am J Sports Med 2024; 52:1336-1349. [PMID: 38482805 DOI: 10.1177/03635465241235149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Restoration of osteochondral defects is critical, because osteoarthritis (OA) can arise. HYPOTHESIS Overexpression of insulin-like growth factor 1 (IGF-1) via recombinant adeno-associated viral (rAAV) vectors (rAAV-IGF-1) would improve osteochondral repair and reduce parameters of early perifocal OA in sheep after 6 months in vivo. STUDY DESIGN Controlled laboratory study. METHODS Osteochondral defects were created in the femoral trochlea of adult sheep and treated with rAAV-IGF-1 or rAAV-lacZ (control) (24 defects in 6 knees per group). After 6 months in vivo, osteochondral repair and perifocal OA were assessed by well-established macroscopic, histological, and immunohistochemical scoring systems as well as biochemical and micro-computed tomography evaluations. RESULTS Application of rAAV-IGF-1 led to prolonged (6 months) IGF-1 overexpression without adverse effects, maintaining a significantly superior overall cartilage repair, together with significantly improved defect filling, extracellular matrix staining, cellular morphology, and surface architecture compared with rAAV-lacZ. Expression of type II collagen significantly increased and that of type I collagen significantly decreased. Subchondral bone repair and tidemark formation were significantly improved, and subchondral bone plate thickness and subarticular spongiosa mineral density returned to normal. The OA parameters of perifocal structure, cell cloning, and matrix staining were significantly better preserved upon rAAV-IGF-1 compared with rAAV-lacZ. Novel mechanistic associations between parameters of osteochondral repair and OA were identified. CONCLUSION Local rAAV-mediated IGF-1 overexpression enhanced osteochondral repair and ameliorated parameters of perifocal early OA. CLINICAL RELEVANCE IGF-1 gene therapy may be beneficial in repair of focal osteochondral defects and prevention of perifocal OA.
Collapse
Affiliation(s)
- Carolin Peifer
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | | | - Lars Goebel
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - David Zurakowski
- Departments of Anesthesia and Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
10
|
Moslehyazdi M, Bielajew B, Schlechter JA, Hu JC, Athanasiou KA, Wang D. Detrimental Effects of Chlorhexidine on Articular Cartilage Viability, Matrix, and Mechanics. Am J Sports Med 2024; 52:1068-1074. [PMID: 38353029 PMCID: PMC10943607 DOI: 10.1177/03635465241226952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/29/2023] [Indexed: 03/17/2024]
Abstract
BACKGROUND Chlorhexidine gluconate (CHG) solution is commonly used as an antiseptic irrigation for bacterial decontamination during orthopaedic surgery. Although the chondrotoxicity of CHG on articular cartilage has been reported, the full extent of CHG-related chondrotoxicity and its effects on the extracellular matrix and mechanical properties are unknown. PURPOSE To investigate the in vitro effects of a single 1-minute CHG exposure on the viability, biochemical content, and mechanics of native articular cartilage explants. STUDY DESIGN Controlled laboratory study. METHODS Articular cartilage explants (6 per group) were harvested from femoral condyles of the porcine stifle and sectioned at tidemark. Explants were bathed in CHG solution (0.05% CHG in sterile water) at varying concentrations (0% control, 0.01% CHG, and 0.05% CHG) for 1 minute, followed by complete phosphate-buffered saline wash and culture in chondrogenic medium. At 7 days after CHG exposure, cell viability, matrix content (collagen and glycosaminoglycan [GAG]), and compressive mechanical properties (creep indentation testing) were assessed. RESULTS One-minute CHG exposure was chondrotoxic to explants, with both 0.05% CHG (2.6% ± 4.1%) and 0.01% CHG (76.3% ± 8.6%) causing a decrease in chondrocyte viability compared with controls (97.5% ± 0.6%; P < .001 for both). CHG exposure at either concentration had no significant effect on collagen content, while 0.05% CHG exposure led to a significant decrease in mean GAG per wet weight compared with the control group (2.6% ± 1.7% vs 5.2% ± 1.9%; P = .029). There was a corresponding weakening of mechanical properties in explants treated with 0.05% CHG compared with controls, with decreases in mean aggregate modulus (177.8 ± 90.1 kPa vs 280.8 ± 19.8 kPa; P < .029) and shear modulus (102.6 ± 56.5 kPa vs 167.9 ± 16.2 kPa; P < .020). CONCLUSION One-minute exposure to CHG for articular cartilage explants led to dose-dependent decreases in chondrocyte viability, GAG content, and compressive mechanical properties. This raises concern for the risk of mechanical failure of the cartilage tissue after CHG exposure. CLINICAL RELEVANCE Clinicians should be judicious regarding the use of CHG irrigation at these concentrations in the presence of native articular cartilage.
Collapse
Affiliation(s)
- Maziar Moslehyazdi
- Department of Orthopaedic Surgery, University of California, Irvine, Orange, California, USA
| | - Benjamin Bielajew
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - John A. Schlechter
- Pediatric Orthopedic Specialists Orange County, Children’s Hospital of Orange County, Orange, California, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Dean Wang
- Department of Orthopaedic Surgery, University of California, Irvine, Orange, California, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
11
|
Nagai-Tanima M, Ishida K, Ishikawa A, Yamada S, Takakuwa T, Aoyama T. Three-Dimensional Imaging Analysis of the Developmental Process of Posterior Meniscofemoral Ligaments in Rat Embryos. Cells Tissues Organs 2024; 213:357-367. [PMID: 38185104 PMCID: PMC11446320 DOI: 10.1159/000536108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
INTRODUCTION The posterior meniscofemoral ligament (pMFL) of knee joint is a ligament that runs posterior to the posterior cruciate ligament and it is known that the height of the pMFL attachment site causes meniscus avulsion. Therefore, understanding the three-dimensional (3D) structure of the pMFL attachment site is essential to better understand the pathogenesis of meniscus disorders. However, the developmental process of pMFL has not been well investigated. The purpose of this study was to analyze pMFL development in rat knee joints using 3D reconstructed images produced from episcopic fluorescence image capture (EFIC) images and examine its relationship with other knee joint components. METHODS Knee joints of Wistar rat embryos between embryonic day (E) 16 and E21 were observed with HE-stained tissues. Serial EFIC images of the hind limbs of E17-E21 were, respectively, captured from which 3D images were reconstructed and the features of pMFL structure: length and angle were measured. Besides, the chronological volume changes and the volume ratio of the knee joint components compared to E17 were calculated to identify the differences in growth by components. RESULTS pMFL was observed from E17 and was attached to the medial femoral condyle and lateral meniscus at all developmental stages, as in mature rats. The lack of marked variation in the attachment site and angle of the pMFL with the developmental stage indicates that the pMFL and surrounding knee joint components developed while maintaining their positional relationship from the onset of development. CONCLUSION Current results may support to congenital etiology of meniscus disorder.
Collapse
Affiliation(s)
- Momoko Nagai-Tanima
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kanon Ishida
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aoi Ishikawa
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigehito Yamada
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuya Takakuwa
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Wang S, Ma J, Zhao X, Xue Y, Liu W, Huang H, Zhang L, Tian A, Ma X. The Osteoarthritis Natural Progress and Changes in Intraosseous Pressure of the Guinea Pig Model in Different Degeneration Stages. Orthop Surg 2022; 14:3036-3046. [PMID: 36168980 DOI: 10.1111/os.13496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Articular cartilage and subchondral bone changes during the pathological progress of knee osteoarthritis (KOA) is a key event marking the development of the disease. The age varying alteration patterns within entire osteochondral unit remains poorly understood. The purpose of this study was to find a reasonable age range of the Dunkin-Hartley guinea pig model for the studying of KOA pathological process, and to investigate Intraosseous pressure (IOP) in the process during different degeneration stages of KOA. METHODS Male Dunkin-Hartley guinea pigs were selected and divided into groups of 3, 6, 9, 12, 18 months old by age, 10 in each group. All knees underwent imaging examination including X-ray, Micro-CT and MRI. Observed the imaging findings with the use of Kellgren-Lawrence (K-L) classification and knee osteoarthritis MRI scores. Measured the IOP of distal femur (DF) and proximal tibia (PT) in each group, and observed the differences of bilateral tibiofemoral articular cartilage in histological and immunohistochemistry, staining results were evaluated by using Mankin's score. Analysis of variance (ANOVA) and t-tests were used to compare the differences indicators between groups. RESULTS With the increase of age, changes in X-ray, Micro-CT and MRI imaging findings and pathological staining results of articular cartilage in all stages were consistent with the changing of degenerative KOA process. The IOP of DF and PT increased gradually with age, and reached its peak in 12-month age group, and then gradually decreased, there was a statistically significant difference of IOP between each group. The IOP of DF was slightly higher than that of PT, but the difference was not statistically significant. CONCLUSION Dunkin-Hartley guinea pigs can be used as an animal model to study different pathological stages of KOA. There might be a correlation between the changes of IOP and the pathological progress of articular cartilage and subchondral bone in DF and PT.
Collapse
Affiliation(s)
- Shuo Wang
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin University, Tianjin, China.,Department of Orthopaedics, Chinese People's Liberation Army Joint Logistics Support Force Tianjin Rehabilitation Center (Former No. 464 Hospital of People's Liberation Army), Tianjin, China
| | - Jianxiong Ma
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xingwen Zhao
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yuan Xue
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Liu
- Department of Orthopaedics, Tianjin Baodi Hospital, Tianjin, China
| | - Hongchao Huang
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Lei Zhang
- Department of Orthopaedics, Tianjin Medical University Hospital for Metabolic Diseases, Tianjin, China
| | - Aixian Tian
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xinlong Ma
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
13
|
Stachel N, Orth P, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M, Madry H. Subchondral Drilling Independent of Drill Hole Number Improves Articular Cartilage Repair and Reduces Subchondral Bone Alterations Compared With Debridement in Adult Sheep. Am J Sports Med 2022; 50:2669-2679. [PMID: 35834876 DOI: 10.1177/03635465221104775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Subchondral drilling is an established marrow stimulation technique for small cartilage defects, but whether drilling is required at all and if the drill hole density affects repair remains unclear. HYPOTHESES Osteochondral repair is improved when the subchondral bone is perforated by a higher number of drill holes per unit area, and drilling is superior to defect debridement alone. STUDY DESIGN Controlled laboratory study. METHODS Rectangular full-thickness chondral defects (4 × 8 mm) were created in the trochlea of adult sheep (N = 16), debrided down to the subchondral bone plate without further treatment as controls (no treatment; n = 7) or treated with either 2 or 6 (n = 7 each) subchondral drill holes (diameter, 1.0 mm; depth, 10.0 mm). Osteochondral repair was assessed at 6 months postoperatively by standardized (semi-)quantitative macroscopic, histological, immunohistochemical, biochemical, and micro-computed tomography analyses. RESULTS Compared with defect debridement alone, histological overall cartilaginous repair tissue quality (P = .025) and the macroscopic aspect of the adjacent cartilage (P≤ .032) were improved after both drilling densities. Only drilling with 6 holes increased type 2 collagen content in the repair tissue compared with controls (P = .038). After debridement, bone mineral density was significantly decreased in the subchondral bone plate (P≤ .015) and the subarticular spongiosa (P≤ .041) compared with both drilling groups. Debridement also significantly increased intralesional osteophyte sectional area compared with drilling (P≤ .034). No other differences in osteochondral repair existed between subchondral drilling with 6 or 2 drill holes. CONCLUSION Subchondral drilling independent of drill hole density significantly improves structural cartilage repair compared with sole defect debridement of full-thickness cartilage defects in sheep after 6 months. Subchondral drilling also leads to a better reconstitution of the subchondral bone compartment below the defects. Simultaneously, drilling reduced the formation of intralesional osteophytes caused by osseous overgrowth compared with debridement. CLINICAL RELEVANCE These results have important clinical implications, as they support subchondral drilling independent of drill hole number but discourage debridement alone for the treatment of small cartilage defects. Clinical studies are warranted to further quantify the effects of subchondral drilling in similar settings.
Collapse
Affiliation(s)
- Niklas Stachel
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - David Zurakowski
- Departments of Anesthesia and Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| |
Collapse
|
14
|
Lossi L. Anatomical features for an adequate choice of the experimental animal model in biomedicine: III. Ferret, goat, sheep, and horse. Ann Anat 2022; 244:151978. [PMID: 35787443 DOI: 10.1016/j.aanat.2022.151978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
The anatomical characteristics of each of the many species today employed in biomedical research are very important when selecting the correct animal model(s), especially for conducting translational research. In previous papers, these features have been considered for fish (D'Angelo et al. Ann. Anat, 2016, 205:75), the most common laboratory rodents, rabbits, and pigs (Lossi et al. 2016). I here follow this line of discussion by dealing with the importance of proper knowledge of ferrets, goats, sheep, and horses' main anatomical features in translational research.
Collapse
Affiliation(s)
- Laura Lossi
- University of Turin, Department of Veterinary Sciences, Turin, Italy; INN, Istituto Nazionale di Neuroscienze, Turin, Italy.
| |
Collapse
|
15
|
Zaki S, Blaker CL, Little CB. OA foundations - experimental models of osteoarthritis. Osteoarthritis Cartilage 2022; 30:357-380. [PMID: 34536528 DOI: 10.1016/j.joca.2021.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is increasingly recognised as a disease of diverse phenotypes with variable clinical presentation, progression, and response to therapeutic intervention. This same diversity is readily apparent in the many animal models of OA. However, model selection, study design, and interpretation of resultant findings, are not routinely done in the context of the target human (or veterinary) patient OA sub-population or phenotype. This review discusses the selection and use of animal models of OA in discovery and therapeutic-development research. Beyond evaluation of the different animal models on offer, this review suggests focussing the approach to OA-animal model selection on study objective(s), alignment of available models with OA-patient sub-types, and the resources available to achieve valid and translatable results. How this approach impacts model selection is discussed and an experimental design checklist for selecting the optimal model(s) is proposed. This approach should act as a guide to new researchers and a reminder to those already in the field, as to issues that need to be considered before embarking on in vivo pre-clinical research. The ultimate purpose of using an OA animal model is to provide the best possible evidence if, how, when and where a molecule, pathway, cell or process is important in clinical disease. By definition this requires both model and study outcomes to align with and be predictive of outcomes in patients. Keeping this at the forefront of research using pre-clinical OA models, will go a long way to improving the quality of evidence and its translational value.
Collapse
Affiliation(s)
- S Zaki
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia; Raymond Purves Bone and Joint Research Laboratory, Australia.
| | - C L Blaker
- Raymond Purves Bone and Joint Research Laboratory, Australia; Murray Maxwell Biomechanics Laboratory, The Kolling Institute, University of Sydney Faculty of Medicine and Health, At Royal North Shore Hospital, Australia.
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Australia.
| |
Collapse
|
16
|
Michaelis JC, Oláh T, Schrenker S, Cucchiarini M, Madry H. A high‐resolution cross‐species comparative analysis of the subchondral bone provides insight into critical topographical patterns of the osteochondral unit. Clin Transl Med 2022; 12:e745. [PMID: 35220683 PMCID: PMC8882244 DOI: 10.1002/ctm2.745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Tamás Oláh
- Center of Experimental Orthopaedics Saarland University Homburg Germany
- Cartilage Net of the Greater Region Homburg Germany
| | - Steffen Schrenker
- Center of Experimental Orthopaedics Saarland University Homburg Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics Saarland University Homburg Germany
- Cartilage Net of the Greater Region Homburg Germany
| | - Henning Madry
- Center of Experimental Orthopaedics Saarland University Homburg Germany
- Cartilage Net of the Greater Region Homburg Germany
| |
Collapse
|
17
|
Lin Z, Deng Z, Liu J, Lin Z, Chen S, Deng Z, Li W. Chloride Channel and Inflammation-Mediated Pathogenesis of Osteoarthritis. J Inflamm Res 2022; 15:953-964. [PMID: 35177922 PMCID: PMC8846625 DOI: 10.2147/jir.s350432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Articular cartilage allows the human body to buffer and absorb stress during normal exercise. It is mainly composed of cartilage cells and the extracellular matrix and is surrounded by the extracellular microenvironment formed by synovial fluid and various factors in it. Studies have shown that chondrocytes are the metabolic center of articular cartilage. Under physiological conditions, the extracellular matrix is in a dynamic balance of anabolism and catabolism, and various factors and physical and chemical conditions in the extracellular microenvironment are also in a steady state. This homeostasis depends on the normal function of proteins represented by various ion channels on chondrocytes. In mammalian chondrocyte species, ion channels are mainly divided into two categories: cation channels and anion channels. Anion channels such as chloride channels have become hot research topics in recent years. These channels play an extremely important role in various physiological processes. Recently, a growing body of evidence has shown that many pathological processes, abnormal concentration of mechanical stress and chloride channel dysfunction in articular cartilage lead to microenvironment disorders, matrix and bone metabolism imbalances, which cause partial aseptic inflammation. These pathological processes initiate extracellular matrix degradation, abnormal chondrocyte death, hyperplasia of inflammatory synovium and bony. Osteoarthritis (OA) is a common clinical disease in orthopedics. Its typical manifestations are joint inflammation and pain caused by articular cartilage degeneration, but its pathogenesis has not been fully elucidated. Focusing on the physiological functions and pathological changes of chloride channels and pathophysiology of aseptic inflammation furthers the understanding of OA pathogenesis and provides possible targets for subsequent medication development.
Collapse
Affiliation(s)
- Zicong Lin
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Jianquan Liu
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhongshi Lin
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), Shenzhen, Guangdong, 518057, People’s Republic of China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Correspondence: Zhenhan Deng, Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13928440786, Fax +86 755-83366388, Email
| | - Wencui Li
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Wencui Li, Department of Hand and Foot Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13923750767, Email
| |
Collapse
|
18
|
Wang H, Zhang Z, Qu Y, Shi Q, Ai S, Cheng CK. Correlation between ACL size and dimensions of bony structures in the knee joint. Ann Anat 2022; 241:151906. [DOI: 10.1016/j.aanat.2022.151906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 11/28/2022]
|