1
|
Zhang M, Zhang R, Hao J, Zhao X, Ma Z, Peng Y, Bao B, Xin J, Yin X, Bi H, Guo D. Quercetin Alleviates Scleral Remodeling Through Inhibiting the PERK-EIF2α Axis in Experiment Myopia. Invest Ophthalmol Vis Sci 2024; 65:11. [PMID: 39504054 PMCID: PMC11549929 DOI: 10.1167/iovs.65.13.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/17/2024] [Indexed: 11/10/2024] Open
Abstract
Purpose This study aims to investigate the effect of quercetin (QUE) on scleral remodeling by inhibiting the PERK-EIF2α signaling pathway and to evaluate its potential role in slowing myopia. Methods Lens-induced myopia (LIM) guinea pigs were obtained and treated with QUE. After 4 and 6 weeks of treatments, ocular biological measurements were conducted. Hematoxylin and eosin (H&E) staining was used to observe the changes in scleral morphology and thickness, and Masson staining was used to examine scleral collagen fiber arrangement. Quantitative PCR (qPCR) and Western bolt were utilized to detect the mRNA and protein expression of PERK, EIF2α, MMP-2, TIMP-2, and collagen I in the scleral tissues. Calcium ion flow in each group was measured using noninvasive micro-test technology, and reactive oxygen species levels were detected by flow cytometry. Results Compared with the LIM group, the ocular measurements showed that the refractive errors and axial length of the eyes were significantly reduced in the LIM + QUE group (P < 0.01). H&E and Masson staining showed that sclera in the LIM + QUE group was thickened, collagen was dense, and the fiber gap was reduced. In the LIM + QUE group, the expression levels of PERK, EIF2α, and MMP-2 were decreased, whereas the expression levels of TIMP-2 and collagen I were increased. Calcium release and reactive oxygen species (ROS) in the LIM + QUE group were decreased. Conclusions Quercetin ameliorates scleral remodeling in myopic guinea pigs by inhibiting the PERK-EIF2α signaling pathway, thereby alleviating the progression of myopia. These findings provide new experimental evidence for the potential application of quercetin in myopia prevention and treatment.
Collapse
Affiliation(s)
- Miao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyue Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bo Bao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jizhao Xin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuewei Yin
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dadong Guo
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, China
| |
Collapse
|
2
|
Sun Y, Sha Y, Yang J, Fu H, Hou X, Li Z, Xie Y, Wang G. Collagen is crucial target protein for scleral remodeling and biomechanical change in myopia progression and control. Heliyon 2024; 10:e35313. [PMID: 39170348 PMCID: PMC11336648 DOI: 10.1016/j.heliyon.2024.e35313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
In recent decades, the prevalence of myopia has been on the rise globally, attributed to changes in living environments and lifestyles. This increase in myopia has become a significant public health concern. High myopia can result in thinning of the sclera and localized ectasia of the posterior sclera, which is the primary risk factor for various eye diseases and significantly impacts patients' quality of life. Therefore, it is essential to explore effective prevention strategies and programs for individuals with myopia. Collagen serves as the principal molecule in the extracellular matrix (ECM) of scleral tissue, consisting of irregular collagen fibrils. Collagen plays a crucial role in myopia progression and control. During the development of myopia, the sclera undergoes a thinning process which is primarily influenced by collagen expression decreased and remodeled, thus leading to a decrease in its biomechanical properties. Improving collagen expression and promoting collagen crosslinking can slow down the progression of myopia. In light of the above, improving collagen expression or enhancing the mechanical properties of collagen fibers via medication or surgery represents a promising approach to control myopia.
Collapse
Affiliation(s)
- Yun Sun
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Yaru Sha
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Jing Yang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Hong Fu
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Xinyu Hou
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Zhuozheng Li
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Yongfang Xie
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Guohui Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| |
Collapse
|
3
|
Kravchenko SV, Sakhnov SN, Myasnikova VV, Trofimenko AI, Buzko VY. [Bioprinting technologies in ophthalmology]. Vestn Oftalmol 2023; 139:105-112. [PMID: 37942604 DOI: 10.17116/oftalma2023139051105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Bioprinting allows additive fabrication of bioengineered constructs with defined two- or three-dimensional organization using live cells, biopolymers and other materials. This article reviews main bioprinting technologies and their capabilities in clinical and experimental ophthalmology. Analysis of literature sources helped reveal and describe the main types of bioprinting technologies: inkjet, laser-assisted, and extrusion. Extrusion bioprinting is the most widely used method, providing the ability to use various types of bioinks and a wide range of cell concentrations. The following materials can be used as the base for bioinks: alginate, collagen, gelatin, hyaluronic acid, chitosan, fibrin, as well as their different combinations. These materials can be modified for best bioprinting properties by adding various functional groups. The major directions of application of bioprinting technologies in ophthalmology are tissue engineering for regenerative medicine and fabrication of model systems for fundamental and preclinical studies. Experiments in creating a bioprinted cornea are being conducted in the field of regenerative medicine. Furthermore, there are studies on fabricating retinal tissue equivalents, although tissue engineering of this structure is a task of great complexity. Model systems, which can be fabricated by bioprinting, are represented by tissue equivalents of ocular structures and the appendages of the eye, as well as by microphysiological organ-on-a-chip systems. Another promising application of bioprinting is fabrication of biocompatible implantable electrode arrays for visual neuroprostheses.
Collapse
Affiliation(s)
- S V Kravchenko
- Krasnodar branch of S.N. Fedorov National Medical Research Center "MNTK "Eye Microsurgery", Krasnodar, Russia
- Kuban State Technological University, Krasnodar, Russia
| | - S N Sakhnov
- Krasnodar branch of S.N. Fedorov National Medical Research Center "MNTK "Eye Microsurgery", Krasnodar, Russia
- Kuban State Medical University, Krasnodar, Russia
| | - V V Myasnikova
- Krasnodar branch of S.N. Fedorov National Medical Research Center "MNTK "Eye Microsurgery", Krasnodar, Russia
- Kuban State Medical University, Krasnodar, Russia
| | - A I Trofimenko
- Kuban State Technological University, Krasnodar, Russia
- Kuban State Medical University, Krasnodar, Russia
- Scientific Research Institute - Ochapovsky Regional Clinical Hospital No. 1, Krasnodar, Russia
| | - V Yu Buzko
- Kuban State University, Krasnodar, Russia
| |
Collapse
|
4
|
Brown DM, Kowalski MA, Paulus QM, Yu J, Kumar P, Kane MA, Patel JM, Ethier CR, Pardue MT. Altered Structure and Function of Murine Sclera in Form-Deprivation Myopia. Invest Ophthalmol Vis Sci 2022; 63:13. [PMID: 36512347 PMCID: PMC9753793 DOI: 10.1167/iovs.63.13.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose The sclera is believed to biomechanically influence eye size, facilitating the excessive axial elongation that occurs during myopigenesis. Here, we test the hypothesis that the sclera will be remodeled and exhibit altered biomechanics in the mouse model of form-deprivation (FD) myopia, accompanied by altered retinoid concentrations, a potential signaling molecule involved in the process. Methods Male C57 Bl/6J mice were subjected to unilateral FD (n = 44 eyes), leaving the contralateral eye untreated (contra; n = 44). Refractive error and ocular biometry were measured in vivo prior to and after 1 or 3 weeks of FD. Ex vivo measurements were made of scleral biomechanical properties (unconfined compression: n = 24), scleral sulfated glycosaminoglycan (sGAG) content (dimethylmethylene blue: n = 18, and immunohistochemistry: n = 22), and ocular all-trans retinoic acid (atRA) concentrations (retina and RPE + choroid + sclera, n = 24). Age-matched naïve controls were included for some outcomes (n = 32 eyes). Results Significant myopia developed after 1 (-2.4 ± 1.1 diopters [D], P < 0.001) and 3 weeks of FD (-4.1 ± 0.7 D, P = 0.025; mean ± standard deviation). Scleral tensile stiffness and permeability were significantly altered during myopigenesis (stiffness = -31.4 ± 12.7%, P < 0.001, and permeability = 224.4 ± 205.5%, P < 0.001). Total scleral sGAG content was not measurably altered; however, immunohistochemistry indicated a sustained decrease in chondroitin-4-sulfate and a slower decline in dermatan sulfate. The atRA increased in the retinas of eyes form-deprived for 1 week. Conclusions We report that biomechanics and GAG content of the mouse sclera are altered during myopigenesis. All scleral outcomes generally follow the trends found in other species and support a retina-to-sclera signaling cascade underlying mouse myopigenesis.
Collapse
Affiliation(s)
- Dillon M. Brown
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, Atlanta, Georgia, United States
| | - Michael A. Kowalski
- Department of Orthopedics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Quinn M. Paulus
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, Atlanta, Georgia, United States
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States
| | - Praveen Kumar
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States
| | - Jay M. Patel
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, Atlanta, Georgia, United States
- Department of Orthopedics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - C. Ross Ethier
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
| | - Machelle T. Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, Atlanta, Georgia, United States
| |
Collapse
|
5
|
Zingale E, Romeo A, Rizzo S, Cimino C, Bonaccorso A, Carbone C, Musumeci T, Pignatello R. Fluorescent Nanosystems for Drug Tracking and Theranostics: Recent Applications in the Ocular Field. Pharmaceutics 2022; 14:pharmaceutics14050955. [PMID: 35631540 PMCID: PMC9147643 DOI: 10.3390/pharmaceutics14050955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
The greatest challenge associated with topical drug delivery for the treatment of diseases affecting the posterior segment of the eye is to overcome the poor bioavailability of the carried molecules. Nanomedicine offers the possibility to overcome obstacles related to physiological mechanisms and ocular barriers by exploiting different ocular routes. Functionalization of nanosystems by fluorescent probes could be a useful strategy to understand the pathway taken by nanocarriers into the ocular globe and to improve the desired targeting accuracy. The application of fluorescence to decorate nanocarrier surfaces or the encapsulation of fluorophore molecules makes the nanosystems a light probe useful in the landscape of diagnostics and theranostics. In this review, a state of the art on ocular routes of administration is reported, with a focus on pathways undertaken after topical application. Numerous studies are reported in the first section, confirming that the use of fluorescent within nanoparticles is already spread for tracking and biodistribution studies. The first section presents fluorescent molecules used for tracking nanosystems’ cellular internalization and permeation of ocular tissues; discussions on the classification of nanosystems according to their nature (lipid-based, polymer-based, metallic-based and protein-based) follows. The following sections are dedicated to diagnostic and theranostic uses, respectively, which represent an innovation in the ocular field obtained by combining dual goals in a single administration system. For its great potential, this application of fluorescent nanoparticles would experience a great development in the near future. Finally, a brief overview is dedicated to the use of fluorescent markers in clinical trials and the market in the ocular field.
Collapse
Affiliation(s)
- Elide Zingale
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Alessia Romeo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Salvatore Rizzo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Cinzia Cimino
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Angela Bonaccorso
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
- Correspondence:
| |
Collapse
|