1
|
Aragona M, Mhalhel K, Pansera L, Montalbano G, Guerrera MC, Levanti M, Laurà R, Abbate F, Vega JA, Germanà A. Localization of Piezo 1 and Piezo 2 in Lateral Line System and Inner Ear of Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:9204. [PMID: 39273152 PMCID: PMC11395407 DOI: 10.3390/ijms25179204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Piezo proteins have been identified as mechanosensitive ion channels involved in mechanotransduction. Several ion channel dysfunctions may be associated with diseases (including deafness and pain); thus, studying them is critical to understand their role in mechanosensitive disorders and to establish new therapeutic strategies. The current study investigated for the first time the expression patterns of Piezo proteins in zebrafish octavolateralis mechanosensory organs. Piezo 1 and 2 were immunoreactive in the sensory epithelia of the lateral line system and the inner ear. Piezo 1 (28.7 ± 1.55 cells) and Piezo 2 (28.8 ± 3.31 cells) immunopositive neuromast cells were identified based on their ultrastructural features, and their overlapping immunoreactivity to the s100p specific marker (28.6 ± 1.62 cells), as sensory cells. These findings are in favor of Piezo proteins' potential role in sensory cell activation, while their expression on mantle cells reflects their implication in the maintenance and regeneration of the neuromast during cell turnover. In the inner ear, Piezo proteins' colocalization with BDNF introduces their potential implication in neuronal plasticity and regenerative events, typical of zebrafish mechanosensory epithelia. Assessing these proteins in zebrafish could open up new scenarios for the roles of these important ionic membrane channels, for example in treating impairments of sensory systems.
Collapse
Affiliation(s)
- Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
2
|
Rizzo M, Pennisi M, Macrì F, Falcone A, Di Pietro S, Mhalhel K, Giudice E. Bilateral Global Nephrocalcinosis in a Uremic Puppy. Vet Sci 2024; 11:338. [PMID: 39195792 PMCID: PMC11359828 DOI: 10.3390/vetsci11080338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
This study explores kidney disease in young dogs, focusing on early diagnosis, management, and the importance of staging for effective treatment. Highlighting mineral metabolism imbalances and complications such as nephrocalcinosis, the study presents a case of severe renal failure with uremic syndrome and bilateral nephrocalcinosis in a 50-day-old puppy. Despite intensive care, the puppy's condition deteriorated rapidly, leading to euthanasia. The study underscores the challenges in diagnosing and managing canine nephrocalcinosis in young animals. It emphasizes the need for further research to improve the understanding and treatment outcomes in such cases, ultimately enhancing the quality of life for animals suffering from this rare condition.
Collapse
Affiliation(s)
- Maria Rizzo
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (M.R.); (M.P.); (F.M.); (K.M.); (E.G.)
| | - Melissa Pennisi
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (M.R.); (M.P.); (F.M.); (K.M.); (E.G.)
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (M.R.); (M.P.); (F.M.); (K.M.); (E.G.)
| | - Annastella Falcone
- Veterinary Teaching Hospital, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy;
| | - Simona Di Pietro
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (M.R.); (M.P.); (F.M.); (K.M.); (E.G.)
| | - Kamel Mhalhel
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (M.R.); (M.P.); (F.M.); (K.M.); (E.G.)
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (M.R.); (M.P.); (F.M.); (K.M.); (E.G.)
| |
Collapse
|
3
|
Aragona M, Mhalhel K, Cometa M, Franco GA, Montalbano G, Guerrera MC, Levanti M, Laurà R, Abbate F, Vega JA, Germanà A. Piezo 1 and Piezo 2 in the Chemosensory Organs of Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:7404. [PMID: 39000511 PMCID: PMC11242578 DOI: 10.3390/ijms25137404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
The ion channels Piezo 1 and Piezo 2 have been identified as membrane mechano-proteins. Studying mechanosensitive channels in chemosensory organs could help in understanding the mechanisms by which these channels operate, offering new therapeutic targets for various disorders. This study investigates the expression patterns of Piezo proteins in zebrafish chemosensory organs. For the first time, Piezo protein expression in adult zebrafish chemosensory organs is reported. In the olfactory epithelium, Piezo 1 immunolabels kappe neurons, microvillous cells, and crypt neurons, while Calretinin is expressed in ciliated sensory cells. The lack of overlap between Piezo 1 and Calretinin confirms Piezo 1's specificity for kappe neurons, microvillous cells, and crypt neurons. Piezo 2 shows intense immunoreactivity in kappe neurons, one-ciliated sensory cells, and multi-ciliated sensory cells, with overlapping Calretinin expression, indicating its olfactory neuron nature. In taste buds, Piezo 1 immunolabels Merkel-like cells at the bases of cutaneous and pharyngeal taste buds and the light and dark cells of cutaneous and oral taste buds. It also marks the dark cells of pharyngeal taste buds and support cells in oral taste buds. Piezo 2 is found in the light and dark cells of cutaneous and oral taste buds and isolated chemosensory cells. These findings provide new insights into the distribution of Piezo channels in zebrafish chemosensory organs, enhancing our understanding of their sensory processing and potential therapeutic applications.
Collapse
Affiliation(s)
- Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Gianluca Antonio Franco
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
4
|
Mhalhel K, Kadmi Y, Ben Chira A, Levanti M, Pansera L, Cometa M, Sicari M, Germanà A, Aragona M, Montalbano G. Urtica dioica Extract Abrogates Chlorpyrifos-Induced Toxicity in Zebrafish Larvae. Int J Mol Sci 2024; 25:6631. [PMID: 38928336 PMCID: PMC11203861 DOI: 10.3390/ijms25126631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Chlorpyrifos (CPF) is a widely used organophosphate insecticide, though its excessive use causes environmental contamination, raising concerns about its adverse effects on human health. In this regard, Urtica dioica stands out as a promising candidate for counteracting chemical 'contaminant' toxicity thanks to its therapeutic properties. Therefore, our study aimed to investigate the potential of an Urtica dioica ethanolic extract (UDE) to mitigate chlorpyrifos-induced toxicity. Eight compounds in the Urtica dioica ethanolic extract have been identified, most of which present significant potential as antioxidant, anti-inflammatory, and neuroprotective agents. Chlorpyrifos exposure altered hatching rates, increased the incidence of teratogenic effects, and upregulated the expression of brain-derived neurotrophic factor (Bdnf) in zebrafish larvae telencephalon. On the other hand, UDE demonstrated a preventive effect against CPF-induced teratogenicity, which is expressed by a lower morphological deformity rate. Moreover, the UDE showed a rather protective effect, maintaining the physiological condition of the telencephalon. Additionally, CPF altered the locomotor behavior of larvae, which was characterized by irregular swimming and increased activity. This defective behavioral pattern was slightly attenuated by the UDE. Our findings suggest that the UDE possesses significant protective properties against CPF-induced toxicity, probably conferred by its natural antioxidant and anti-inflammatory contents. Still, further research is needed to elucidate the recruited mechanisms and implicated pathways on UDE's protective effects.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Yassine Kadmi
- LASIRE, Equipe Physico-Chimie de l’Environnement, CNRS UMR 8516, Université Lille, Sciences et Technologies, CEDEX, 59655 Villeneuve d′Ascq, France;
- Department of Chemistry, Université d’Artois, IUT de Béthune, 62400 Béthune, France
| | - Ahlem Ben Chira
- LR22ES01 Laboratory of Biomathematics, Faculty of Sciences of Sfax, Department of Mathematics, P.O. Box 1171, Sfax 3000, Tunisia;
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| |
Collapse
|
5
|
Porcino C, Mhalhel K, Briglia M, Cometa M, Guerrera MC, Germanà PG, Montalbano G, Levanti M, Laurà R, Abbate F, Germanà A, Aragona M. Neurotrophins and Trk Neurotrophin Receptors in the Retina of Adult Killifish ( Nothobranchius guentheri). Int J Mol Sci 2024; 25:2732. [PMID: 38473977 DOI: 10.3390/ijms25052732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins-tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors' knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells.
Collapse
Affiliation(s)
- Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marilena Briglia
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Patrizia Germana Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
6
|
Mhalhel K, Levanti M, Abbate F, Laurà R, Guerrera MC, Aragona M, Porcino C, Pansera L, Sicari M, Cometa M, Briglia M, Germanà A, Montalbano G. Skeletal Morphogenesis and Anomalies in Gilthead Seabream: A Comprehensive Review. Int J Mol Sci 2023; 24:16030. [PMID: 38003219 PMCID: PMC10671147 DOI: 10.3390/ijms242216030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The gilthead seabream, one of the most important species in Mediterranean aquaculture, with an increasing status of exploitation in terms of production volume and aquafarming technologies, has become an important research topic over the years. The accumulation of knowledge from several studies conducted during recent decades on their functional and biological characteristics has significantly improved their aquacultural aspects, namely their reproductive success, survival, and growth. Despite the remarkable progress in the aquaculture industry, hatchery conditions are still far from ideal, resulting in frequent abnormalities at the beginning of intensive culture, entailing significant economic losses. Those deformities are induced during the embryonic and post-embryonic periods of life, and their development is still poorly understood. In the present review, we created a comprehensive synthesis that covers the various aspects of skeletal morphogenesis and anomalies in the gilthead seabream, highlighting the genetic, environmental, and nutritional factors contributing to bone deformities and emphasized the potential of the gilthead seabream as a model organism for understanding bone morphogenesis in both aquaculture and translational biological research. This review article addresses the existing lack in the literature regarding gilthead seabream bone deformities, as there are currently no comprehensive reviews on this subject.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Marilena Briglia
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| |
Collapse
|