1
|
Walker SS, Degen D, Nickbarg E, Carr D, Soriano A, Mandal M, Painter RE, Sheth P, Xiao L, Sher X, Murgolo N, Su J, Olsen DB, Ebright RH, Young K. Affinity Selection-Mass Spectrometry Identifies a Novel Antibacterial RNA Polymerase Inhibitor. ACS Chem Biol 2017; 12:1346-1352. [PMID: 28323406 DOI: 10.1021/acschembio.6b01133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The growing prevalence of drug resistant bacteria is a significant global threat to human health. The antibacterial drug rifampin, which functions by inhibiting bacterial RNA polymerase (RNAP), is an important part of the antibacterial armamentarium. Here, in order to identify novel inhibitors of bacterial RNAP, we used affinity-selection mass spectrometry to screen a chemical library for compounds that bind to Escherichia coli RNAP. We identified a novel small molecule, MRL-436, that binds to RNAP, inhibits RNAP, and exhibits antibacterial activity. MRL-436 binds to RNAP through a binding site that differs from the rifampin binding site, inhibits rifampin-resistant RNAP derivatives, and exhibits antibacterial activity against rifampin-resistant strains. Isolation of mutants resistant to the antibacterial activity of MRL-436 yields a missense mutation in codon 622 of the rpoC gene encoding the RNAP β' subunit or a null mutation in the rpoZ gene encoding the RNAP ω subunit, confirming that RNAP is the functional cellular target for the antibacterial activity of MRL-436, and indicating that RNAP β' subunit residue 622 and the RNAP ω subunit are required for the antibacterial activity of MRL-436. Similarity between the resistance determinant for MRL-436 and the resistance determinant for the cellular alarmone ppGpp suggests a possible similarity in binding site and/or induced conformational state for MRL-436 and ppGpp.
Collapse
Affiliation(s)
- Scott S. Walker
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - David Degen
- Department
of Chemistry and Waksman Institute, Rutgers University, Piscataway, New Jersey 08854, United States
| | | | - Donna Carr
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Aileen Soriano
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Mihir Mandal
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Payal Sheth
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Li Xiao
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xinwei Sher
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Jing Su
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - David B. Olsen
- Merck & Co., Inc., Upper Gwynedd, Pennsylvania 19454, United States
| | - Richard H. Ebright
- Department
of Chemistry and Waksman Institute, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Katherine Young
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
2
|
Hassan HM, Degen D, Jang KH, Ebright RH, Fenical W. Salinamide F, new depsipeptide antibiotic and inhibitor of bacterial RNA polymerase from a marine-derived Streptomyces sp. J Antibiot (Tokyo) 2015; 68:206-9. [PMID: 25227504 PMCID: PMC4363298 DOI: 10.1038/ja.2014.122] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/10/2014] [Accepted: 08/13/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Hossam M Hassan
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - David Degen
- Department of Chemistry and Chemical Biology, Waksman Institute, Rutgers University, Piscataway, NJ, USA
| | - Kyoung Hwa Jang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Richard H Ebright
- Department of Chemistry and Chemical Biology, Waksman Institute, Rutgers University, Piscataway, NJ, USA
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Siricilla S, Mitachi K, Wan B, Franzblau SG, Kurosu M. Discovery of a capuramycin analog that kills nonreplicating Mycobacterium tuberculosis and its synergistic effects with translocase I inhibitors. J Antibiot (Tokyo) 2014; 68:271-8. [PMID: 25269459 PMCID: PMC4382465 DOI: 10.1038/ja.2014.133] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/02/2014] [Accepted: 09/07/2014] [Indexed: 11/20/2022]
Abstract
Capuramycin (1) and its analogs are strong translocase I (MurX/MraY) inhibitors. In our SAR studies of capuramycin analogs against M. tuberculosis (Mtb), we observed for the first time that a capuramycin analog, UT-01320 (3) killed non-replicating (dormant) Mtb at low concentrations under low-oxygen conditions, whereas selective MurX inhibitors killed only replicating Mtb under aerobic conditions. Interestingly, 3 did not exhibit MurX enzyme inhibitory activity even at high concentrations, however, 3 inhibited bacterial RNA polymerases with the IC50 values of 100-150 nM range. A new RNA polymerase inhibitor 3 displayed strong synergistic effects with a MurX inhibitor SQ 641 (2), a promising preclinical TB drug.
Collapse
Affiliation(s)
- Shajila Siricilla
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bajoie Wan
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
4
|
Zhang Y, Degen D, Ho MX, Sineva E, Ebright KY, Ebright YW, Mekler V, Vahedian-Movahed H, Feng Y, Yin R, Tuske S, Irschik H, Jansen R, Maffioli S, Donadio S, Arnold E, Ebright RH. GE23077 binds to the RNA polymerase 'i' and 'i+1' sites and prevents the binding of initiating nucleotides. eLife 2014; 3:e02450. [PMID: 24755292 PMCID: PMC3994528 DOI: 10.7554/elife.02450] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center ‘i’ and ‘i+1’ nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site. Accordingly, GE and rifamycins do not exhibit cross-resistance, and GE and a rifamycin can bind simultaneously to RNAP. The GE binding site on RNAP is immediately adjacent to the rifamycin binding site. Accordingly, covalent linkage of GE to a rifamycin provides a bipartite inhibitor having very high potency and very low susceptibility to target-based resistance. DOI:http://dx.doi.org/10.7554/eLife.02450.001 As increasing numbers of bacteria become resistant to antibiotics, new drugs are needed to fight bacterial infections. To develop new antibacterial drugs, researchers need to understand how existing antibiotics work. There are many ways to kill bacteria, but one of the most effective is to target an enzyme called bacterial RNA polymerase. If bacterial RNA polymerase is prevented from working, bacteria cannot synthesize RNA and cannot survive. GE23077 (GE for short) is an antibiotic produced by bacteria found in soil. Although GE stops bacterial RNA polymerase from working, and thereby kills bacteria, it does not affect mammalian RNA polymerases, and so does not kill mammalian cells. Understanding how GE works could help with the development of new antibacterial drugs. Zhang et al. present results gathered from a range of techniques to show how GE inhibits bacterial RNA polymerase. These show that GE works by binding to a site on RNA polymerase that is different from the binding sites of previously characterized antibacterial drugs. The mechanism used to inhibit the RNA polymerase is also different. The newly identified binding site has several features that make it an unusually attractive target for development of antibacterial compounds. Bacteria can become resistant to an antibiotic if genetic mutations lead to changes in the site the antibiotic binds to. However, the site that GE binds to on RNA polymerase is essential for RNA polymerase to function and so cannot readily be changed without crippling the enzyme. Therefore, this type of antibiotic resistance is less likely to develop. In addition, the newly identified binding site for GE on RNA polymerase is located next to the binding site for a current antibacterial drug, rifampin. Zhang et al. therefore linked GE and rifampin to form a two-part (‘bipartite’) compound designed to bind simultaneously to the GE and the rifampin binding sites. This compound was able to inhibit drug-resistant RNA polymerases tens to thousands of times more potently than GE or rifampin alone. DOI:http://dx.doi.org/10.7554/eLife.02450.002
Collapse
Affiliation(s)
- Yu Zhang
- Waksman Institute, Rutgers University, Piscataway, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Siegmund V, Santner T, Micura R, Marx A. Screening mutant libraries of T7 RNA polymerase for candidates with increased acceptance of 2'-modified nucleotides. Chem Commun (Camb) 2012; 48:9870-2. [PMID: 22932771 DOI: 10.1039/c2cc35028a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a screening assay based on fluorescence readout for the directed evolution of T7 RNA polymerase variants with acceptance of 2'-modified nucleotides. By using this screening we were able to identify a T7 RNA polymerase mutant with increased acceptance of 2'-methylseleno-2'-deoxyuridine 5'-triphosphate.
Collapse
Affiliation(s)
- Vanessa Siegmund
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
6
|
Srivastava A, Talaue M, Liu S, Degen D, Ebright RY, Sineva E, Chakraborty A, Druzhinin SY, Chatterjee S, Mukhopadhyay J, Ebright YW, Zozula A, Shen J, Sengupta S, Niedfeldt RR, Xin C, Kaneko T, Irschik H, Jansen R, Donadio S, Connell N, Ebright RH. New target for inhibition of bacterial RNA polymerase: 'switch region'. Curr Opin Microbiol 2011; 14:532-43. [PMID: 21862392 PMCID: PMC3196380 DOI: 10.1016/j.mib.2011.07.030] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 01/08/2023]
Abstract
A new drug target - the 'switch region' - has been identified within bacterial RNA polymerase (RNAP), the enzyme that mediates bacterial RNA synthesis. The new target serves as the binding site for compounds that inhibit bacterial RNA synthesis and kill bacteria. Since the new target is present in most bacterial species, compounds that bind to the new target are active against a broad spectrum of bacterial species. Since the new target is different from targets of other antibacterial agents, compounds that bind to the new target are not cross-resistant with other antibacterial agents. Four antibiotics that function through the new target have been identified: myxopyronin, corallopyronin, ripostatin, and lipiarmycin. This review summarizes the switch region, switch-region inhibitors, and implications for antibacterial drug discovery.
Collapse
Affiliation(s)
- Aashish Srivastava
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Meliza Talaue
- Center for Biodefense, University of Medicine and Dentistry of New Jersey, Newark NJ 07101, USA
| | - Shuang Liu
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - David Degen
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Richard Y. Ebright
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Elena Sineva
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Anirban Chakraborty
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Sergey Y. Druzhinin
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Sujoy Chatterjee
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Jayanta Mukhopadhyay
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Yon W. Ebright
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Alex Zozula
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Juan Shen
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Sonali Sengupta
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Rui Rong Niedfeldt
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Cai Xin
- College of Chemical Engineering, Sichuan University, Sichuan, Chengdu 610065, PRC
| | - Takushi Kaneko
- Global Alliance for TB Drug Development, New York NY 10004, USA
| | - Herbert Irschik
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Rolf Jansen
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Stefano Donadio
- NAICONS--New Anti-Infectives Consortium, 20138 Milano, Italy
| | - Nancy Connell
- Center for Biodefense, University of Medicine and Dentistry of New Jersey, Newark NJ 07101, USA
| | - Richard H. Ebright
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| |
Collapse
|
7
|
Bhat J, Rane R, Solapure SM, Sarkar D, Sharma U, Harish MN, Lamb S, Plant D, Alcock P, Peters S, Barde S, Roy RK. High-throughput screening of RNA polymerase inhibitors using a fluorescent UTP analog. ACTA ACUST UNITED AC 2006; 11:968-76. [PMID: 17021309 DOI: 10.1177/1087057106291978] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
RNA polymerase (RNAP) is a well-validated target for the development of antibacterial and antituberculosis agents. Because the purification of large quantities of native RNA polymerase from pathogenic mycobacteria is hazardous and cumbersome, the primary screening was carried out using Escherichia coli RNAP. The authors have developed a high-throughput screening (HTS) assay to screen for novel inhibitors of RNAP. In this assay, a fluorescent analog of UTP, gamma-amino naphthalene sulfonic acid (gamma-AmNS) UTP, was used as one of the nucleotide substrates. Incorporation of UMP in RNA results in the release of gamma-AmNS-PPi, which has higher intrinsic fluorescence than (gamma-AmNS) UTP. The assay was optimized in a 384-well format and used to screen 670,000 compounds at a concentration of 10 microM. About 0.1% of the compounds showed more than 60% inhibition in the primary HTS. All the primary actives tested for dose response using the same assay had an EC(50) below 100 microM. Eighty percent of the primary HTS actives obtained using E. coli RNAP showed comparable activity against Mycobacterium smegmatis RNAP in the conventional radioactive assay. Activity of hits selected for the hit-to-lead optimization was also confirmed against Mycobacterium bovis RNAP which has >99% sequence identity with Mycobacterium tuberculosis RNAP subunits.
Collapse
Affiliation(s)
- Jyothi Bhat
- AstraZeneca India Pvt. Ltd., Hebbal, Bangalore, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|