1
|
Phenethylamine is a substrate of monoamine oxidase B in the paraventricular thalamic nucleus. Sci Rep 2022; 12:17. [PMID: 34996979 PMCID: PMC8742005 DOI: 10.1038/s41598-021-03885-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022] Open
Abstract
Monoamine oxidase (MAO) is a key enzyme responsible for the degradation of neurotransmitters and trace amines. MAO has two subtypes (MAO-A and MAO-B) that are encoded by different genes. In the brain, MAO-B is highly expressed in the paraventricular thalamic nucleus (PVT); however, its substrate in PVT remains unclear. To identify the MAO-B substrate in PVT, we generated Maob knockout (KO) mice and measured five candidate substrates (i.e., noradrenaline, dopamine, 3-methoxytyramine, serotonin, and phenethylamine [PEA]) by liquid chromatography tandem mass spectrometry. We showed that only PEA levels were markedly elevated in the PVT of Maob KO mice. To exclude the influence of peripheral MAO-B deficiency, we developed brain-specific Maob KO mice, finding that PEA in the PVT was increased in brain-specific Maob KO mice, whereas the extent of PEA increase was less than that in global Maob KO mice. Given that plasma PEA levels were elevated in global KO mice, but not in brain–specific KO mice, and that PEA passes across the blood–brain barrier, the substantial accumulation of PEA in the PVT of Maob KO mice was likely due to the increase in plasma PEA. These data suggest that PEA is a substrate of MAO-B in the PVT as well as other tissues.
Collapse
|
2
|
Jiang B, Meng L, Zou N, Wang H, Li S, Huang L, Cheng X, Wang Z, Chen W, Wang C. Mechanism-based pharmacokinetics-pharmacodynamics studies of harmine and harmaline on neurotransmitters regulatory effects in healthy rats: Challenge on monoamine oxidase and acetylcholinesterase inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152967. [PMID: 31154274 DOI: 10.1016/j.phymed.2019.152967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/20/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND β-Carboline alkaloid harmine (HAR) and harmaline (HAL) are monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitors. However, whether HAR and HAL inhibit MAO or AChE selectively and competitively is unclear. PURPOSE The purpose of this study was to investigate the potential competition inhibition of HAR and HAL on MAO and AChE in brain endothelial cells (RBE4) and in healthy rats to provide a basis for the application of the inhibitors in the treatment of patients with depression and with Parkinson's disease or Alzheimer's disease. STUDY DESIGN/METHODS The transport properties of HAR and HAL by using blood-brain barrier models constructed with RBE4 were systematically investigated. Then, the modulation effects of HAR and HAL on CNS neurotransmitters (NTs) in healthy rat brains were determined by a microdialysis method coupled with LC-MS/MS. The competition inhibition of HAR and HAL on MAO and AChE was evaluated through real time-PCR, Western blot analysis, and molecular docking experiments. RESULTS Results showed that HAL and HAR can be detected in the blood and striatum 300 min after intravenous injection (1 mg/kg). Choline (Ch), gamma-aminobutyric acid (GABA), glutamate (Glu), and phenylalanine (Phe) levels in the striatum decreased in a time-dependent manner after the HAL treatment, with average velocities of 1.41, 0.73, 3.86, and 1.10 (ng/ml)/min, respectively. The Ch and GABA levels in the striatum decreased after the HAR treatment, with average velocities of 1.16 and 0.22 ng/ml/min, respectively. The results of the cocktail experiment using the human liver enzyme indicated that the IC50 value of HAL on MAO-A was 0.10 ± 0.08 µm and that of HAR was 0.38 ± 0.21 µm. Their IC50 values on AChE were not obtained. These findings indicated that HAL and HAR selectively acted on MAO in vitro. However, RT-PCR and Western blot analysis results showed that the AChE mRNA and protein expression decreased in a time-dependent manner in RBE4 cells after the HAR and HAL treatments. CONCLUSION NT analysis results showed that HAL and HAR selectively affect AChE in vivo. HAL and HAR may be highly and suitably developed for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China; Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Liyuan Meng
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Nan Zou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Hanxue Wang
- Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
| | - Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Lifeng Huang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
3
|
A spectrophotometric assay for monoamine oxidase activity with 2, 4-dinitrophenylhydrazine as a derivatized reagent. Anal Biochem 2016; 512:18-25. [DOI: 10.1016/j.ab.2016.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 11/20/2022]
|
4
|
A validated LC–MS/MS method for neurotransmitter metabolite analysis in human cerebrospinal fluid using benzoyl chloride derivatization. Bioanalysis 2015; 7:2461-75. [DOI: 10.4155/bio.15.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Human cerebrospinal fluid (CSF) is often acquired in Phase I clinical trials to assess the CNS penetration of new pharmacological agents and to search for biomarkers associated with PD effects. Robust methods for neurotransmitter metabolites in CSF have proven elusive, in part due to inadequate reversed phase LC retention. Results: Benzoyl chloride derivatization was used to promote retention for LC–MS/MS for a panel of neurotransmitter metabolites while delivering a concise method for sample preparation. Conclusion: A validated assay in human CSF was obtained for 3,4-dihydroxyphenylacetic acid, homovanillic acid, 3,4-dihydroxyphenylglycol and 5-hydroxyindoleacetic acid. This method is differentiated from other LC–MS/MS methods by delivering results in line with full regulatory expectations.
Collapse
|
5
|
Jiang B, Li S, Liu W, Yang Y, Chen W, He D, Cheng X, Wang Z, Chen W, Wang C. Inhibitive activities detection of monoamine oxidases (MAO) A and B inhibitors in human liver MAO incubations by UPLC-ESI-MS/MS. J Pharm Biomed Anal 2015; 115:283-91. [PMID: 26263056 DOI: 10.1016/j.jpba.2015.07.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/02/2015] [Accepted: 07/22/2015] [Indexed: 12/24/2022]
Abstract
A sensitive UPLC-ESI-MS/MS method was developed for determining and screening of inhibitors of monoamine oxidase (MAO) by using mix MAO enzymes prepared from human liver. 5-Hydroxytryptamine (5-HT) and 2-phenethylamine (2-PEA) were used as substrates for MAO-A and MAO-B in incubations, and 5-hydroxyindole-3-acetic acid (5-HIAA) and phenylacetic acid (PAA) resulting from 5-HT and 2-PEA were used as markers to evaluate inhibitive activities of test compounds on MAO-A and MAO-B. Proper separation was achieved for positive multiple reaction monitoring of 5-HIAA (m/z 192.1→146.1) and negative multiple reaction monitoring PAA (m/z 135.0→91.0) via isocratic elution (0.1% fromic acid:acetonitrile=60:40) on a HSS T3 column following a simple precipitation of proteins for sample treatment. The relative standard deviations of intra- and inter-day precisions were ranged from 1.74% to 6.76% and 0.77% to 9.35%. The mean accuracies for the quality control samples were 101.37±6.60% and 101.39±2.85%, respectively. This method exhibited characteristics of small total reaction volume (100μl), short analysis time (3.5min), highly sensitivity, low cost and without matrix effect (103.56±2.33% to 112.63±8.57% for 5-HIAA and 105.68±8.75% to 112.76±4.67% for PAA). The developed method was successfully applied for detection of the MAO-A and MAO-B inhibitive activities by model drugs, including pargyline, clorgyline, as well as β-carboline alkaloids from Peganum harmala.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Wei Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Yadi Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Wenxia Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Dandan He
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
6
|
Li Y, Li L, Stephens MJ, Zenner D, Murray KC, Winship IR, Vavrek R, Baker GB, Fouad K, Bennett DJ. Synthesis, transport, and metabolism of serotonin formed from exogenously applied 5-HTP after spinal cord injury in rats. J Neurophysiol 2013; 111:145-63. [PMID: 24068759 DOI: 10.1152/jn.00508.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord transection leads to elimination of brain stem-derived monoamine fibers that normally synthesize most of the monoamines in the spinal cord, including serotonin (5-hydroxytryptamine, 5-HT) synthesized from tryptophan by enzymes tryptophan hydroxylase (TPH, synthesizing 5-hydroxytryptophan, 5-HTP) and aromatic l-amino acid decarboxylase (AADC, synthesizing 5-HT from 5-HTP). Here we examine whether spinal cord caudal to transection remains able to manufacture and metabolize 5-HT. Immunolabeling for AADC reveals that, while most AADC is confined to brain stem-derived monoamine fibers in spinal cords from normal rats, caudal to transection AADC is primarily found in blood vessel endothelial cells and pericytes as well as a novel group of neurons (NeuN positive and GFAP negative), all of which strongly upregulate AADC with injury. However, immunolabeling for 5-HT reveals that there is no detectable endogenous 5-HT synthesis in any structure in the spinal cord caudal to a chronic transection, including in AADC-containing vessels and neurons, consistent with a lack of TPH. In contrast, when we applied exogenous 5-HTP (in vitro or in vivo), AADC-containing vessels and neurons synthesized 5-HT, which contributed to increased motoneuron activity and muscle spasms (long-lasting reflexes, LLRs), by acting on 5-HT2 receptors (SB206553 sensitive) located on motoneurons (TTX resistant). Blocking monoamine oxidase (MAO) markedly increased the sensitivity of the motoneurons (LLR) to 5-HTP, more than it increased the sensitivity of motoneurons to 5-HT, suggesting that 5-HT synthesized from AADC is largely metabolized in AADC-containing neurons and vessels. In summary, after spinal cord injury AADC is upregulated in vessels, pericytes, and neurons but does not endogenously produce 5-HT, whereas when exogenous 5-HTP is provided AADC does produce functional amounts of 5-HT, some of which is able to escape metabolism by MAO, diffuse out of these AADC-containing cells, and ultimately act on 5-HT receptors on motoneurons.
Collapse
Affiliation(s)
- Yaqing Li
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zheng X, Kang A, Dai C, Liang Y, Xie T, Xie L, Peng Y, Wang G, Hao H. Quantitative Analysis of Neurochemical Panel in Rat Brain and Plasma by Liquid Chromatography–Tandem Mass Spectrometry. Anal Chem 2012; 84:10044-51. [DOI: 10.1021/ac3025202] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiao Zheng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - An Kang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Chen Dai
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yan Liang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Tong Xie
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Lin Xie
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yin Peng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
8
|
The Application and Validation of HybridSPE-Precipitation Cartridge Technology for the Rapid Clean-up of Serum Matrices (from Phospholipids) for the Clinical Analysis of Serotonin, Dopamine and Melatonin. Chromatographia 2012. [DOI: 10.1007/s10337-012-2330-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Development of a nano-electrospray MSn method for the analysis of serotonin and related compounds in urine using a LTQ-orbitrap mass spectrometer. Talanta 2012; 90:1-11. [DOI: 10.1016/j.talanta.2011.11.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/21/2011] [Accepted: 11/27/2011] [Indexed: 11/19/2022]
|
10
|
Development of an LC-MS/MS method for the analysis of serotonin and related compounds in urine and the identification of a potential biomarker for attention deficit hyperactivity/hyperkinetic disorder. Anal Bioanal Chem 2011; 401:2481-93. [PMID: 21866401 DOI: 10.1007/s00216-011-5322-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/06/2011] [Accepted: 08/06/2011] [Indexed: 02/06/2023]
Abstract
Serotonin is a major neurotransmitter and affects various functions both in the brain and in the rest of the body. It has been demonstrated that altered serotinergic function is implicated in various psychiatric disorders including depression and schizophrenia. Serotonin has also been implicated along with dopamine in attention deficit-hyperkinetic disorder (AD-HKD). This study provides a versatile validated method for the analysis of serotonin, hydroxyindole acetic acid and dopamine in urine using LC-MS/MS. This method was then used to quantify these analytes in a test group of 17 children diagnosed with severe AD-HKD. This group was compared to a matched control group to investigate the possibility that one of these compounds may be a potential biomarker for this condition. The developed method provided good linear calibration curves for the multiplex assay of analytes in urine (0.05-3.27 nmol/L; R(2) ≥ 0.9977). Acceptable inter-day repeatability was achieved for all analytes with RSD values (n = 9) ranging from 1.1% to 9.3% over a concentration range of 0.11-3.27 μmol/L in urine. Excellent limits of detection (LOD) and limits of quantitation (LOQ) were achieved with LODs of 8.8-18.2 nmol/L and the LOQs of 29.4-55.7 nmol/L for analytes in urine. Recoveries were in the ranges of 98-104%, 100-106% and 91-107% for serotonin, 5-HIAA and dopamine, respectively. An appropriate sample clean-up procedure for urine was developed to ensure efficient recovery and reproducibility on analysis. Evaluation of matrix effects was also carried out and the influence of ion suppression on analytical results reported. Confirmatory analysis was carried out on a linear trap quadrupole-Orbitrap mass spectrometer to obtain high mass accuracy data of the target analytes in the clinical samples.
Collapse
|
11
|
González RR, Fernández RF, Vidal JLM, Frenich AG, Pérez MLG. Development and validation of an ultra-high performance liquid chromatography-tandem mass-spectrometry (UHPLC-MS/MS) method for the simultaneous determination of neurotransmitters in rat brain samples. J Neurosci Methods 2011; 198:187-94. [PMID: 21459108 DOI: 10.1016/j.jneumeth.2011.03.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/25/2011] [Accepted: 03/26/2011] [Indexed: 10/18/2022]
Abstract
A simple method for the simultaneous determination of glutamate, γ-aminobutyric acid (GABA), choline, acetylcholine, dopamine, 5-hydroxyindole-3-acetic (5-HIAA), serotonin, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) was developed by using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). These compounds are analysed in a single chromatographic run in less than 8 min, adding heptafluorobutyric acid (HFBA) in the mobile phase to improve the separation of the selected neurotransmitters. The analytes were detected using electrospray ionization (ESI)-MS/MS in positive mode with multiple reaction monitoring (MRM). Good linearity was obtained (R² > 0.98) and the intra and inter-day precision of the method (expressed as relative standard deviation) were lower than 26%. Limits of quantification were lower than 2.440 μg/g of brain in all the cases, allowing the sensitive determination of these compounds in rat brain extracts. Therefore, the method was successfully applied for the quantitative determination of neurotransmitters in several rat brain regions (prefrontal cortex, striatum, nucleus accumbens and amygdala), detecting glutamate, GABA and choline at concentrations higher than 1000 μg/g, 30 μg/g and 100 μg/g respectively, whereas the other compounds were found at lower concentrations.
Collapse
Affiliation(s)
- Roberto Romero González
- Research Group "Analytical Chemistry of Contaminants", Department of Analytical Chemistry, Almeria University, 04071 Almeria, Spain
| | | | | | | | | |
Collapse
|
12
|
Direct chiral determination of free amino acid enantiomers by two-dimensional liquid chromatography: application to control transformations in E-beam irradiated foodstuffs. Anal Bioanal Chem 2009; 397:63-75. [DOI: 10.1007/s00216-009-3376-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
|
13
|
Preskorn SH. Why the transdermal delivery of selegiline (6 mg/24 hr) obviates the need for a dietary restriction on tyramine. J Psychiatr Pract 2006; 12:168-72. [PMID: 16732136 DOI: 10.1097/00131746-200605000-00006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sheldon H Preskorn
- Department of Psychiatry, University of Kansas School of Medicine-Wichita, KS, USA
| |
Collapse
|
14
|
Bourcier S, Benoist JF, Clerc F, Rigal O, Taghi M, Hoppilliard Y. Detection of 28 neurotransmitters and related compounds in biological fluids by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:1405-21. [PMID: 16572467 DOI: 10.1002/rcm.2459] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This work presents two liquid chromatography/tandem mass spectrometry (LC/MS/MS) acquisition modes: multiple reaction monitoring (MRM) and neutral loss scan (NL), for the analysis of 28 compounds in a mixture. This mixture includes 21 compounds related to the metabolism of three amino acids: tyrosine, tryptophan and glutamic acid, two pterins and five deuterated compounds used as internal standards. The identification of compounds is achieved using the retention times (RT) and the characteristic fragmentations of ionized compounds. The acquisition modes used for the detection of characteristic ions turned out to be complementary: the identification of expected compounds only is feasible by MRM while expected and unexpected compounds are detected by NL. In the first part of this work, the fragmentations characterizing each molecule of interest are described. These fragmentations are used in the second part for the detection by MRM and NL of selected compounds in mixture with and without biological fluids. Any preliminary extraction precedes the analysis of compounds in biological fluids.
Collapse
Affiliation(s)
- Sophie Bourcier
- Laboratoire des Mécanismes Réactionnels, Unité Mixte de recherche CNRS 7651, Ecole Polytechnique, 91128 Palaiseau Cedex, France.
| | | | | | | | | | | |
Collapse
|
15
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:416-427. [PMID: 15751104 DOI: 10.1002/jms.804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In order to keep subscribers up-to-date with the latest developments in their field, John Wiley & Sons are providing a current awareness service in each issue of the journal. The bibliography contains newly published material in the field of mass spectrometry. Each bibliography is divided into 11 sections: 1 Books, Reviews & Symposia; 2 Instrumental Techniques & Methods; 3 Gas Phase Ion Chemistry; 4 Biology/Biochemistry: Amino Acids, Peptides & Proteins; Carbohydrates; Lipids; Nucleic Acids; 5 Pharmacology/Toxicology; 6 Natural Products; 7 Analysis of Organic Compounds; 8 Analysis of Inorganics/Organometallics; 9 Surface Analysis; 10 Environmental Analysis; 11 Elemental Analysis. Within each section, articles are listed in alphabetical order with respect to author (4 Weeks journals - Search completed at 12th. Jan. 2005).
Collapse
|