1
|
Sexton D, Faucette R, Rivera-Hernandez M, Kenniston JA, Papaioannou N, Cosic J, Kopacz K, Salmon G, Beauchemin C, Juethner S, Yeung D. A novel assay of excess plasma kallikrein-kinin system activation in hereditary angioedema. FRONTIERS IN ALLERGY 2024; 5:1436855. [PMID: 39391687 PMCID: PMC11464748 DOI: 10.3389/falgy.2024.1436855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Background Cleaved high-molecular-weight kininogen (HKa) is a disease state biomarker of kallikrein-kinin system (KKS) activation in patients with hereditary angioedema due to C1 inhibitor deficiency (HAE-C1INH), the endogenous inhibitor of plasma kallikrein (PKa). Objective Develop an HKa-specific enzyme-linked immunosorbent assay (ELISA) to monitor KKS activation in the plasma of HAE-C1INH patients. Methods A novel HKa-specific antibody was discovered by antibody phage display and used as a capture reagent to develop an HKa-specific ELISA. Results Specific HKa detection following KKS activation was observed in plasma from healthy controls but not in prekallikrein-, high-molecular-weight kininogen-, or coagulation factor XII (FXII)-deficient plasma. HKa levels in plasma collected from HAE-C1INH patients in a disease quiescent state were higher than in plasma from healthy controls and increased further in HAE-C1INH plasma collected during an angioedema attack. The specificity of the assay for PKa-mediated HKa generation in minimally diluted plasma activated with exogenous FXIIa was demonstrated using a specific monoclonal antibody inhibitor (lanadelumab, IC50 = 0.044 µM). Conclusions An ELISA was developed for the specific and quantitative detection of HKa in human plasma to support HAE-C1INH drug development. Improved quantification of the HKa biomarker may facilitate further pathophysiologic insight into HAE-C1INH and other diseases mediated by a dysregulated KKS and may enable the design of highly potent inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Dan Sexton
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Ryan Faucette
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | | | - Jon A. Kenniston
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | | | - Janja Cosic
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Kris Kopacz
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Gary Salmon
- Charles River Laboratories, Harlow, United Kingdom
| | | | - Salomé Juethner
- Takeda Pharmaceuticals USA, Inc., Lexington, MA, United States
| | - Dave Yeung
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| |
Collapse
|
2
|
Pinto MF, Sirina J, Holliday ND, McWhirter CL. High-throughput kinetics in drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100170. [PMID: 38964171 DOI: 10.1016/j.slasd.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
The importance of a drug's kinetic profile and interplay of structure-kinetic activity with PK/PD has long been appreciated in drug discovery. However, technical challenges have often limited detailed kinetic characterization of compounds to the latter stages of projects. This review highlights the advances that have been made in recent years in techniques, instrumentation, and data analysis to increase the throughput of detailed kinetic and mechanistic characterization, enabling its application earlier in the drug discovery process.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom
| | - Julija Sirina
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom
| | - Nicholas D Holliday
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom; School of Life Sciences, The Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Claire L McWhirter
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom.
| |
Collapse
|
3
|
Badugu R, Lakowicz JR. Plasmon- and Waveguide-Coupled Fluorescence at the Ultraviolet Region. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:12084-12095. [PMID: 38274198 PMCID: PMC10809784 DOI: 10.1021/acs.jpcc.3c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Surface plasmon-coupled emission (SPCE) has been well studied for its coupled, directional, and enhanced P-polarized radiation due to the interactions of fluorophores with surface plasmon polaritons (SPPs) on thin metal films. Such surface plasmon polariton-assisted directional fluorescence has various applications in biosensing. Herein, we demonstrate 2-aminopurine (2AP, a UV-absorbing and -emitting fluorophore) emission coupling to modes in aluminum-based plasmon-coupled waveguides (Al-PCWs). Directional emission from 2-aminopurine on plasmon-coupled waveguides was observed at specific angles as P-polarized SPCE and/or as P- or S-polarized waveguide-coupled emission (WGCE). All S-polarized waveguide modes showed clear angularly resolved emission as compared to that of P-polarized surface plasmon-coupled emission or P-polarized waveguide-coupled emission. The coupling angles, efficiencies, and polarizations of the modes were sensitive to the optical properties and overall dimensions of the top dielectric layer in PCWs. The effective plasmon-coupled waveguide can consist of either a thin probe-containing layer on top of the undoped silica film, or a single dielectric PVA layer with probes distributed throughout the film on the Al layer. The former structures with probes confined to the top of the undoped silica layer showed much higher angular resolutions and coupling efficiencies, as well as mode-dependent changes in lifetimes. These results demonstrate that the plasmon and waveguide modes can be used for selective detection of surface-bound and bulk fluorophores, simultaneously.
Collapse
Affiliation(s)
- Ramachandram Badugu
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Joseph R Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
4
|
Mahdavi SZB, Oroojalian F, Eyvazi S, Hejazi M, Baradaran B, Pouladi N, Tohidkia MR, Mokhtarzadeh A, Muyldermans S. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages. Int J Biol Macromol 2022; 208:421-442. [PMID: 35339499 DOI: 10.1016/j.ijbiomac.2022.03.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 11/05/2022]
Abstract
Antibodies as ideal therapeutic and diagnostic molecules are among the top-selling drugs providing considerable efficacy in disease treatment, especially in cancer therapy. Limitations of the hybridoma technology as routine antibody generation method in conjunction with numerous developments in molecular biology led to the development of alternative approaches for the streamlined identification of most effective antibodies. In this regard, display selection technologies such as phage display, bacterial display, and yeast display have been widely promoted over the past three decades as ideal alternatives to traditional methods. The display of antibodies on phages is probably the most widespread of these methods, although surface display on bacteria or yeast have been employed successfully, as well. These methods using various sizes of combinatorial antibody libraries and different selection strategies possessing benefits in screening potency, generating, and isolation of high affinity antibodies with low risk of immunogenicity. Knowing the basics of each method assists in the design and retrieval process of antibodies suitable for different diseases, including cancer. In this review, we aim to outline the basics of each library construction and its display method, screening and selection steps. The advantages and disadvantages in comparison to alternative methods, and their applications in antibody engineering will be explained. Finally, we will review approved or non-approved therapeutic antibodies developed by employing these methods, which may serve as therapeutic antibodies in cancer therapy.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Maryam Hejazi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China..
| |
Collapse
|
5
|
Elhabashy H, Merino F, Alva V, Kohlbacher O, Lupas AN. Exploring protein-protein interactions at the proteome level. Structure 2022; 30:462-475. [DOI: 10.1016/j.str.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
|
6
|
A Quantitative Systems Approach to Define Novel Effects of Tumour p53 Mutations on Binding Oncoprotein MDM2. Int J Mol Sci 2021; 23:ijms23010053. [PMID: 35008477 PMCID: PMC8744954 DOI: 10.3390/ijms23010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Understanding transient protein interactions biochemically at the proteome scale remains a long-standing challenge. Current tools developed to study protein interactions in high-throughput measure stable protein complexes and provide binary readouts; they do not elucidate dynamic and weak protein interactions in a proteome. The majority of protein interactions are transient and cover a wide range of affinities. Nucleic acid programmable protein arrays (NAPPA) are self-assembling protein microarrays produced by freshly translating full-length proteins in situ on the array surface. Herein, we have coupled NAPPA to surface plasmon resonance imaging (SPRi) to produce a novel label-free platform that measures many protein interactions in real-time allowing the determination of the KDs and rate constants. The developed novel NAPPA-SPRi technique showed excellent ability to study protein-protein interactions of clinical mutants of p53 with its regulator MDM2. Furthermore, this method was employed to identify mutant p53 proteins insensitive to the drug nutlin-3, currently in clinical practice, which usually disrupts the p53-MDM2 interactions. Thus, significant differences in the interactions were observed for p53 mutants on the DNA binding domain (Arg-273-Cys, Arg-273-His, Arg-248-Glu, Arg-280-Lys), on the structural domain (His-179-Tyr, Cys-176-Phe), on hydrophobic moieties in the DNA binding domain (Arg-280-Thr, Pro-151-Ser, Cys-176-Phe) and hot spot mutants (Gly-245-Cys, Arg-273-Leu, Arg-248-Glu, Arg-248-Gly), which signifies the importance of point mutations on the MDM2 interaction and nutlin3 effect, even in molecular locations related to other protein activities.
Collapse
|
7
|
Armaghan F, Hajihassan Z. Engineering a variant of IL-17RA with high binding affinity to IL-17A for optimized immunotherapy. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00682. [PMID: 34765462 PMCID: PMC8572878 DOI: 10.1016/j.btre.2021.e00682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022]
Abstract
Immunotherapy is one of the most recently used treatments for numerous cancer types and also some autoimmune and inflammatory diseases. One of the valuable targets for immunotherapy is Interleukin-17A (IL-17A) or its receptor (IL-17RA) because overexpression of IL-17A as a pro-inflammatory cytokine is associated with several inflammatory, autoimmune and cancer diseases. In this study, the extracellular domain of IL-17RA involved in binding to IL-17A was mutated by using R software to achieve a variant with increased binding affinity to IL-17A. The ∆∆G value of -30.89 kcal/mol was calculated for the best variant (385) with point mutations of R265N, N91T, and W31K using the FoldX module. Also, the KD for its interaction with IL-17A was calculated 0.06 nM by surface plasmon resonance (SPR) technique. Our results indicated that variant 385 could bind to IL-17A with higher binding affinity than wild-type one, so, it can be a good therapeutic candidate for blocking IL-17A.
Collapse
Affiliation(s)
- Fatemeh Armaghan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Zahra Hajihassan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Surface plasmon resonance sensing of Ebola virus: a biological threat. Anal Bioanal Chem 2020; 412:4101-4112. [PMID: 32306070 DOI: 10.1007/s00216-020-02641-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Here, different monoclonal antibodies (mAb1, mAb2 and mAb3) of Ebola virus were screened in a real-time and label-free manner using surface plasmon resonance (SPR) to select an appropriate antibody for biosensor applications against a biological warfare agent. For this purpose, a gold SPR chip was modified with 4-mercaptobenzoic acid (4-MBA), and modification was confirmed by FTIR-ATR and EIS. The 4-MBA-modified gold SPR chip was used for immobilization of the recombinant nucleoprotein of Ebola (EBOV-rNP), and the interactions of mAb1, mAb2 and mAb3 were then investigated to determine the best mAb based on the affinity constant (KD), expressed as equilibrium dissociation constant. KD values of 809 nM, 350 pM and 52 pM were found for the interaction of mAb1, mAb2 and mAb3 of Ebola with the immobilized EBOV-rNP, respectively, thus reflecting the high affinity of mAb3. This was confirmed by ELISA results. The thermodynamic parameters (ΔG, ΔH and ΔS) for the interaction between mAb3 and EBOV-rNP were also determined, which revealed that the interaction was spontaneous, endothermic and driven by entropy. The SPR limit of detection of EBOV-rNP with mAb3 was 0.5 pg ml-1, showing mAb3 to be the best high-affinity antibody in our study. This study has opened up new possibilities for SPR screening of different monoclonal antibodies of BWA through the convergence of materials science and optical techniques.
Collapse
|
10
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Ross GMS, Bremer MGEG, Wichers JH, van Amerongen A, Nielen MWF. Rapid Antibody Selection Using Surface Plasmon Resonance for High-Speed and Sensitive Hazelnut Lateral Flow Prototypes. BIOSENSORS 2018; 8:E130. [PMID: 30558252 PMCID: PMC6316566 DOI: 10.3390/bios8040130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
Abstract
Lateral Flow Immunoassays (LFIAs) allow for rapid, low-cost, screening of many biomolecules such as food allergens. Despite being classified as rapid tests, many LFIAs take 10⁻20 min to complete. For a really high-speed LFIA, it is necessary to assess antibody association kinetics. By using a label-free optical technique such as Surface Plasmon Resonance (SPR), it is possible to screen crude monoclonal antibody (mAb) preparations for their association rates against a target. Herein, we describe an SPR-based method for screening and selecting crude anti-hazelnut antibodies based on their relative association rates, cross reactivity and sandwich pairing capabilities, for subsequent application in a rapid ligand binding assay. Thanks to the SPR selection process, only the fast mAb (F-50-6B12) and the slow (S-50-5H9) mAb needed purification for labelling with carbon nanoparticles to exploit high-speed LFIA prototypes. The kinetics observed in SPR were reflected in LFIA, with the test line appearing within 30 s, almost two times faster when F-50-6B12 was used, compared with S-50-5H9. Additionally, the LFIAs have demonstrated their future applicability to real life samples by detecting hazelnut in the sub-ppm range in a cookie matrix. Finally, these LFIAs not only provide a qualitative result when read visually, but also generate semi-quantitative data when exploiting freely downloadable smartphone apps.
Collapse
Affiliation(s)
- Georgina M S Ross
- RIKILT, Wageningen University & Research. P.O Box 230, 6700 AE Wageningen, The Netherlands.
| | - Maria G E G Bremer
- RIKILT, Wageningen University & Research. P.O Box 230, 6700 AE Wageningen, The Netherlands.
| | - Jan H Wichers
- Wageningen Food & Biobased Research, BioSensing & Diagnostics, Wageningen University & Research, P.O Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Aart van Amerongen
- Wageningen Food & Biobased Research, BioSensing & Diagnostics, Wageningen University & Research, P.O Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Michel W F Nielen
- RIKILT, Wageningen University & Research. P.O Box 230, 6700 AE Wageningen, The Netherlands.
- Wageningen University, Laboratory of Organic Chemistry, Helix Building 124, Stippeneng 4. 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
12
|
Sikarwar B, Singh VV, Sharma PK, Kumar A, Thavaselvam D, Boopathi M, Singh B, Jaiswal YK. DNA-probe-target interaction based detection of Brucella melitensis by using surface plasmon resonance. Biosens Bioelectron 2016; 87:964-969. [PMID: 27665519 DOI: 10.1016/j.bios.2016.09.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 12/20/2022]
Abstract
Surface plasmon resonance (SPR) immunosensor using 4-mercaptobenzoic acid (4-MBA) modified gold (4-MBA/Au) SPR chip was developed first time for the detection of Brucella melitensis (B. melitensis) based on the screening of its complementary DNA target by using two different newly designed DNA probes of IS711 gene. Herein, interaction between DNA probes and target molecule are also investigated and result revealed that the interaction is spontaneous. The kinetics and thermodynamic results derived from the experimental data showed that the interaction between complementary DNA targets and probe 1 is more effective than that of probe 2. Equilibrium dissociation constant (KD) and maximum binding capacity of analyte (Bmax) values for the interaction of complementary DNA target with the immobilized DNA probes were calculated by using kinetic evaluation software, and found to be 15.3 pM (KD) and 81.02m° (Bmax) with probe 1 and 54.9pM and 55.29m° (Bmax), respectively. Moreover, real serum samples analysis were also carried out using immobilized probe 1 and probe 2 with SPR which showed the applicability of this methodology and provides an alternative way for the detection of B. melitensis in less than 10min. This remarkable sensing response of present methodology offer a real time and label free detection of biological warfare agent and provide an opportunity to make miniaturized sensor, indicating considerable promise for diverse environmental, bio-defence, clinical diagnostics, food safety, water and security applications.
Collapse
Affiliation(s)
- Bhavna Sikarwar
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior 474002, India
| | - Virendra V Singh
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior 474002, India
| | - Pushpendra K Sharma
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior 474002, India
| | - Ashu Kumar
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior 474002, India
| | | | - Mannan Boopathi
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior 474002, India.
| | - Beer Singh
- Defence Research and Development Establishment, DRDO, Jhansi Road, Gwalior 474002, India
| | - Yogesh K Jaiswal
- School of Studies in Biochemistry, Jiwaji University, Gwalior 474011, India
| |
Collapse
|
13
|
Niesen J, Sack M, Seidel M, Fendel R, Barth S, Fischer R, Stein C. SNAP-Tag Technology: A Useful Tool To Determine Affinity Constants and Other Functional Parameters of Novel Antibody Fragments. Bioconjug Chem 2016; 27:1931-41. [PMID: 27391930 DOI: 10.1021/acs.bioconjchem.6b00315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibody derivatives, such as the single chain fragment variable (scFv), can be developed as diagnostic and therapeutic tools in cancer research, especially in the form of fusion proteins. Such derivatives are easier to produce and modify than monoclonal antibodies (mAbs) and achieve better tissue/tumor penetration. The genetic modification of scFvs is also much more straightforward than the challenging chemical modification of mAbs. Therefore, we constructed two scFvs derived from the approved monoclonal antibodies cetuximab (scFv2112) and panitumumab (scFv1711), both of which are specific for the epidermal growth factor receptor (EGFR), a well-characterized solid tumor antigen. Both scFvs were genetically fused to the SNAP-tag, an engineered version of the human DNA repair enzyme O(6)-alkylguanine DNA alkyltransferase that allows the covalent coupling of benzylguanine (BG)-modified substrates such as fluorescent dyes. The SNAP-tag achieves controllable and irreversible protein modification and is an important tool for experimental studies in vitro and in vivo. The affinity constant of a scFv is a key functional parameter, especially in the context of a fusion protein. Therefore, we developed a method to define the affinity constants of scFv-SNAP fusion proteins by surface plasmon resonance (SPR) spectroscopy. We could confirm that both scFvs retained their functionality after fusion to the SNAP-tag in a variety of procedures and assays, including ELISA, flow cytometry, and confocal microscopy. The experimental procedures described herein, and the new protocol for affinity determination by SPR spectroscopy, are suitable for the preclinical evaluation of diverse antibody formats and derivatives.
Collapse
Affiliation(s)
- Judith Niesen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany
| | - Markus Sack
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University , 52074 Aachen, Germany
| | - Melanie Seidel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany.,Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University , 52074 Aachen, Germany
| | - Christoph Stein
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany
| |
Collapse
|
14
|
Baumann P, Hubbuch J. Downstream process development strategies for effective bioprocesses: Trends, progress, and combinatorial approaches. Eng Life Sci 2016; 17:1142-1158. [PMID: 32624742 DOI: 10.1002/elsc.201600033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/09/2016] [Accepted: 04/07/2016] [Indexed: 12/26/2022] Open
Abstract
The biopharmaceutical industry is at a turning point moving toward a more customized and patient-oriented medicine (precision medicine). Straightforward routines such as the antibody platform process are extended to production processes for a new portfolio of molecules. As a consequence, individual and tailored productions require generic approaches for a fast and dedicated purification process development. In this article, different effective strategies in biopharmaceutical purification process development are reviewed that can analogously be used for the new generation of antibodies. Conventional approaches based on heuristics and high-throughput process development are discussed and compared to modern technologies such as multivariate calibration and mechanistic modeling tools. Such approaches constitute a good foundation for fast and effective process development for new products and processes, but their full potential becomes obvious in a correlated combination. Thus, different combinatorial approaches are presented, which might become future directions in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Pascal Baumann
- Biomolecular Separation Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Jürgen Hubbuch
- Biomolecular Separation Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| |
Collapse
|
15
|
Mohseni S, Moghadam TT, Dabirmanesh B, Jabbari S, Khajeh K. Development of a label-free SPR sensor for detection of matrixmetalloproteinase-9 by antibody immobilization on carboxymethyldextran chip. Biosens Bioelectron 2016; 81:510-516. [PMID: 27016912 DOI: 10.1016/j.bios.2016.03.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/12/2016] [Accepted: 03/17/2016] [Indexed: 01/12/2023]
Abstract
Surface plasmon resonance (SPR) immunosensor has been widely utilized for monitoring antigen-antibody interactions. The sensor measures changes of refractive index upon binding of analyte molecules to specific ligand immobilized on the sensor chip. This effort reports development of SPR immunosensor for real-time and label-free detection of recombinant human matrix metalloproteinases-9 (MMP-9), which has been associated with malignant tumor progression and metastasis by matrix degradation. MMP-9 was expressed in Escherichia coli BL21 and purified by Ni-NTA agarose column. CMD 50 D was activated by EDC/NHS for immobilization of monoclonal anti-MMP-9. Atomic force microscopy images showed uniform distribution of anti-MMP-9 over the sensor chip. Equilibrium constant (KD), maximum binding capacity (Rmax) and ∆Gb values for interaction of MMP-9 and anti-MMP-9 were 0.4nM, 680 µRIU and -53.51kJ/mol, respectively. Concentration of MMP-9 in saliva samples was determined, with linearity in the range of 10-200ng/mL. The limit of detection was found to be 8pg/mL, being lower than most of the previously reported techniques.
Collapse
Affiliation(s)
- Sara Mohseni
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tahereh Tohidi Moghadam
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Safoura Jabbari
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Jalali-Yazdi F, Huong Lai L, Takahashi TT, Roberts RW. High-Throughput Measurement of Binding Kinetics by mRNA Display and Next-Generation Sequencing. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Farzad Jalali-Yazdi
- Department of Chemical Engineering and Materials Science; University of Southern California; Los Angeles CA 90089 USA
| | - Lan Huong Lai
- Department of Chemistry; University of Southern California; Los Angeles CA 90089 USA
| | - Terry T. Takahashi
- Department of Chemistry; University of Southern California; Los Angeles CA 90089 USA
| | - Richard W. Roberts
- Department of Chemical Engineering and Materials Science; University of Southern California; Los Angeles CA 90089 USA
- Department of Molecular Computational Biology; USC Norris Comprehensive Cancer Center; University of Southern California; Los Angeles CA 90089 USA
| |
Collapse
|
17
|
Jalali-Yazdi F, Lai LH, Takahashi TT, Roberts RW. High-Throughput Measurement of Binding Kinetics by mRNA Display and Next-Generation Sequencing. Angew Chem Int Ed Engl 2016; 55:4007-10. [PMID: 26914638 DOI: 10.1002/anie.201600077] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/02/2016] [Indexed: 01/23/2023]
Abstract
There is great demand for high-throughput methods to characterize ligand affinity. By combining mRNA display with next-generation sequencing, we determined the kinetic on- and off-rates for over twenty thousand ligands without the need for synthesis or purification of individual members. Our results are reproducible and as accurate as those obtained with other methods of affinity measurement.
Collapse
Affiliation(s)
- Farzad Jalali-Yazdi
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lan Huong Lai
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Terry T Takahashi
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Richard W Roberts
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA. .,Department of Molecular Computational Biology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
18
|
Zaytsev AV, Segura-Peña D, Godzi M, Calderon A, Ballister ER, Stamatov R, Mayo AM, Peterson L, Black BE, Ataullakhanov FI, Lampson MA, Grishchuk EL. Bistability of a coupled Aurora B kinase-phosphatase system in cell division. eLife 2016; 5:e10644. [PMID: 26765564 PMCID: PMC4798973 DOI: 10.7554/elife.10644] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023] Open
Abstract
Aurora B kinase, a key regulator of cell division, localizes to specific cellular locations, but the regulatory mechanisms responsible for phosphorylation of substrates located remotely from kinase enrichment sites are unclear. Here, we provide evidence that this activity at a distance depends on both sites of high kinase concentration and the bistability of a coupled kinase-phosphatase system. We reconstitute this bistable behavior and hysteresis using purified components to reveal co-existence of distinct high and low Aurora B activity states, sustained by a two-component kinase autoactivation mechanism. Furthermore, we demonstrate these non-linear regimes in live cells using a FRET-based phosphorylation sensor, and provide a mechanistic theoretical model for spatial regulation of Aurora B phosphorylation. We propose that bistability of an Aurora B-phosphatase system underlies formation of spatial phosphorylation patterns, which are generated and spread from sites of kinase autoactivation, thereby regulating cell division.
Collapse
Affiliation(s)
- Anatoly V Zaytsev
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Dario Segura-Peña
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Maxim Godzi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Abram Calderon
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Edward R Ballister
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Rumen Stamatov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Alyssa M Mayo
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Laura Peterson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Fazly I Ataullakhanov
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Department of Physics, Moscow State University, Moscow, Russia
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
19
|
Rojas G, Tundidor Y, Infante YC. High throughput functional epitope mapping: revisiting phage display platform to scan target antigen surface. MAbs 2015; 6:1368-76. [PMID: 25484050 DOI: 10.4161/mabs.36144] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antibody engineering must be accompanied by mapping strategies focused on identifying the epitope recognized by each antibody to define its unique functional identity. High throughput fine specificity determination remains technically challenging. We review recent experiences aimed at revisiting the oldest and most extended display technology to develop a robust epitope mapping platform, based on the ability to manipulate target-derived molecules (ranging from the whole native antigen to antigen domains and smaller fragments) on filamentous phages. Single, multiple and combinatorial mutagenesis allowed comprehensive scanning of phage-displayed antigen surface that resulted in the identification of clusters of residues contributing to epitope formation. Functional pictures of the epitope(s) were thus delineated in the natural context. Successful mapping of antibodies against interleukin-2, epidermal growth factor and its receptor, and vascular endothelial growth factor showed the versatility of these procedures, which combine the accuracy of site-directed mutagenesis with the high throughput potential of phage display.
Collapse
Key Words
- Abs, antibodies
- Ag, antigen
- EGF
- EGF receptor
- EGF, epidermal growth factor
- EGFR, EGF receptor
- ELISA, enzyme-linked immunosorbent assay
- IL-2
- IL-2, interleukin-2
- PCR, polymerase chain reaction
- VEGF
- VEGF, vascular endothelial growth factor
- aa, amino acid
- epitope mapping
- library
- mAb, monoclonal Ab
- phage display
- site-directed mutagenesis
Collapse
Affiliation(s)
- Gertrudis Rojas
- a Systems Biology Department ; Center of Molecular Immunology ; La Habana , Cuba
| | | | | |
Collapse
|
20
|
Vauquelin G, Huber W, Swinney DC. Experimental Methods to Determine Binding Kinetics. THERMODYNAMICS AND KINETICS OF DRUG BINDING 2015. [DOI: 10.1002/9783527673025.ch9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Nixon AE, Chen J, Sexton DJ, Muruganandam A, Bitonti AJ, Dumont J, Viswanathan M, Martik D, Wassaf D, Mezo A, Wood CR, Biedenkapp JC, TenHoor C. Fully human monoclonal antibody inhibitors of the neonatal fc receptor reduce circulating IgG in non-human primates. Front Immunol 2015; 6:176. [PMID: 25954273 PMCID: PMC4407741 DOI: 10.3389/fimmu.2015.00176] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/29/2015] [Indexed: 12/24/2022] Open
Abstract
The therapeutic management of antibody-mediated autoimmune disease typically involves immunosuppressant and immunomodulatory strategies. However, perturbing the fundamental role of the neonatal Fc receptor (FcRn) in salvaging IgG from lysosomal degradation provides a novel approach - depleting the body of pathogenic immunoglobulin by preventing IgG binding to FcRn and thereby increasing the rate of IgG catabolism. Herein, we describe the discovery and preclinical evaluation of fully human monoclonal IgG antibody inhibitors of FcRn. Using phage display, we identified several potent inhibitors of human-FcRn in which binding to FcRn is pH-independent, with over 1000-fold higher affinity for human-FcRn than human IgG-Fc at pH 7.4. FcRn antagonism in vivo using a human-FcRn knock-in transgenic mouse model caused enhanced catabolism of exogenously administered human IgG. In non-human primates, we observed reductions in endogenous circulating IgG of >60% with no changes in albumin, IgM, or IgA. FcRn antagonism did not disrupt the ability of non-human primates to mount IgM/IgG primary and secondary immune responses. Interestingly, the therapeutic anti-FcRn antibodies had a short serum half-life but caused a prolonged reduction in IgG levels. This may be explained by the high affinity of the antibodies to FcRn at both acidic and neutral pH. These results provide important preclinical proof of concept data in support of FcRn antagonism as a novel approach to the treatment of antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
| | - Jie Chen
- Dyax Corp. , Burlington, MA , USA
| | | | | | - Alan J Bitonti
- Syntonix Pharmaceuticals (a wholly-owned subsidiary of Biogen Idec.) , Waltham, MA , USA
| | | | | | | | | | - Adam Mezo
- Syntonix Pharmaceuticals (a wholly-owned subsidiary of Biogen Idec.) , Waltham, MA , USA
| | | | | | | |
Collapse
|
22
|
Davidoff SN, Ditto NT, Brooks AE, Eckman J, Brooks BD. Surface Plasmon Resonance for Therapeutic Antibody Characterization. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-1-4939-2617-6_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Lad L, Clancy S, Kovalenko M, Liu C, Hui T, Smith V, Pagratis N. High-throughput kinetic screening of hybridomas to identify high-affinity antibodies using bio-layer interferometry. ACTA ACUST UNITED AC 2014; 20:498-507. [PMID: 25425568 DOI: 10.1177/1087057114560123] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kinetic analysis of antibodies is crucial in both clone selection and characterization. Historically, antibodies in supernatants from hybridomas are selected based on a solid-phase enzyme-linked immunosorbent assay (ELISA) in which the antigen is immobilized on the assay plate. ELISA selects clones based on a combination of antibody concentration in the supernatant and affinity. The antibody concentration in the supernatant can vary significantly and is typically unknown. Using the ELISA method, clones that express high levels of a low-affinity antibody can give an equivalent signal as clones that express low levels of a high-affinity antibody. As a consequence, using the ELISA method, superior clones can be overshadowed by inferior clones. In this study, we have applied Bio-Layer Interferometry to screen hybridoma clones based on disassociation rates using the OctetRED 384 platform. Using the OctetRED platform, we were able to screen 2000 clones within 24 hours and select clones containing high-affinity antibodies for further expansion and subsequent characterization. Using this method, we were able to identify several clones producing high-affinity antibodies that were missed by ELISA.
Collapse
Affiliation(s)
- Latesh Lad
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | - Chian Liu
- Gilead Sciences, Inc., Foster City, CA, USA
| | - Terence Hui
- Pall ForteBio Corporation, Menlo Park, CA, USA
| | | | | |
Collapse
|
24
|
Sikarwar B, Sharma PK, Srivastava A, Agarwal GS, Boopathi M, Singh B, Jaiswal YK. Surface plasmon resonance characterization of monoclonal and polyclonal antibodies of malaria for biosensor applications. Biosens Bioelectron 2014; 60:201-9. [DOI: 10.1016/j.bios.2014.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 11/26/2022]
|
25
|
Kenniston JA, Faucette RR, Martik D, Comeau SR, Lindberg AP, Kopacz KJ, Conley GP, Chen J, Viswanathan M, Kastrapeli N, Cosic J, Mason S, DiLeo M, Abendroth J, Kuzmic P, Ladner RC, Edwards TE, TenHoor C, Adelman BA, Nixon AE, Sexton DJ. Inhibition of plasma kallikrein by a highly specific active site blocking antibody. J Biol Chem 2014; 289:23596-608. [PMID: 24970892 PMCID: PMC4156074 DOI: 10.1074/jbc.m114.569061] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma kallikrein (pKal) proteolytically cleaves high molecular weight kininogen to generate the potent vasodilator and the pro-inflammatory peptide, bradykinin. pKal activity is tightly regulated in healthy individuals by the serpin C1-inhibitor, but individuals with hereditary angioedema (HAE) are deficient in C1-inhibitor and consequently exhibit excessive bradykinin generation that in turn causes debilitating and potentially fatal swelling attacks. To develop a potential therapeutic agent for HAE and other pKal-mediated disorders, we used phage display to discover a fully human IgG1 monoclonal antibody (DX-2930) against pKal. In vitro experiments demonstrated that DX-2930 potently inhibits active pKal (Ki = 0.120 ± 0.005 nm) but does not target either the zymogen (prekallikrein) or any other serine protease tested. These findings are supported by a 2.1-Å resolution crystal structure of pKal complexed to a DX-2930 Fab construct, which establishes that the pKal active site is fully occluded by the antibody. DX-2930 injected subcutaneously into cynomolgus monkeys exhibited a long half-life (t½ ∼12.5 days) and blocked high molecular weight kininogen proteolysis in activated plasma in a dose- and time-dependent manner. Furthermore, subcutaneous DX-2930 reduced carrageenan-induced paw edema in rats. A potent and long acting inhibitor of pKal activity could be an effective treatment option for pKal-mediated diseases, such as HAE.
Collapse
Affiliation(s)
| | | | - Diana Martik
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | | | - Kris J Kopacz
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | - Jie Chen
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | | | - Janja Cosic
- From the Dyax Corp., Burlington, Massachusetts 01803
| | - Shauna Mason
- From the Dyax Corp., Burlington, Massachusetts 01803
| | - Mike DiLeo
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ahmed FE. Mining the oncoproteome and studying molecular interactions for biomarker development by 2DE, ChIP and SPR technologies. Expert Rev Proteomics 2014; 5:469-96. [DOI: 10.1586/14789450.5.3.469] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Chandra H, Reddy PJ, Srivastava S. Protein microarrays and novel detection platforms. Expert Rev Proteomics 2014; 8:61-79. [DOI: 10.1586/epr.10.99] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Off-rate screening for selection of high-affinity anti-drug antibodies. Anal Biochem 2013; 441:208-13. [DOI: 10.1016/j.ab.2013.07.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 11/19/2022]
|
29
|
Holzmeister P, Acuna GP, Grohmann D, Tinnefeld P. Breaking the concentration limit of optical single-molecule detection. Chem Soc Rev 2013; 43:1014-28. [PMID: 24019005 DOI: 10.1039/c3cs60207a] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last decade, single-molecule detection has been successfully utilized in the life sciences and materials science. Yet, single-molecule measurements only yield meaningful results when working in a suitable, narrow concentration range. On the one hand, diffraction limits the minimal size of the observation volume in optical single-molecule measurements and consequently a sample must be adequately diluted so that only one molecule resides within the observation volume. On the other hand, at ultra-low concentrations relevant for sensing, the detection volume has to be increased in order to detect molecules in a reasonable timespan. This in turn results in the loss of an optimal signal-to-noise ratio necessary for single-molecule detection. This review discusses the requirements for effective single-molecule fluorescence applications, reflects on the motivation for the extension of the dynamic concentration range of single-molecule measurements and reviews various approaches that have been introduced recently to solve these issues. For the high-concentration limit, we identify four promising strategies including molecular confinement, optical observation volume reduction, temporal separation of signals and well-conceived experimental designs that specifically circumvent the high concentration limit. The low concentration limit is addressed by increasing the measurement speed, parallelization, signal amplification and preconcentration. The further development of these ideas will expand our possibilities to interrogate research questions with the clarity and precision provided only by the single-molecule approach.
Collapse
Affiliation(s)
- Phil Holzmeister
- Braunschweig University of Technology, Institute for Physical & Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig, Germany.
| | | | | | | |
Collapse
|
30
|
MacGriff C, Wang S, Wiktor P, Wang W, Shan X, Tao N. Charge-Based Detection of Small Molecules by Plasmonic-Based Electrochemical Impedance Microscopy. Anal Chem 2013; 85:6682-7. [DOI: 10.1021/ac400475z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher MacGriff
- School of Electrical, Computer,
and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
- Center for Bioelectronics and
Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Center for Bioelectronics and
Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Peter Wiktor
- Center for Bioelectronics and
Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Wei Wang
- Center for Bioelectronics and
Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaonan Shan
- School of Electrical, Computer,
and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
- Center for Bioelectronics and
Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Nongjian Tao
- School of Electrical, Computer,
and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
- Center for Bioelectronics and
Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
31
|
BLIP-II is a highly potent inhibitor of Klebsiella pneumoniae carbapenemase (KPC-2). Antimicrob Agents Chemother 2013; 57:3398-401. [PMID: 23587951 DOI: 10.1128/aac.00215-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
β-Lactamase inhibitory protein II (BLIP-II) is a potent inhibitor of class A β-lactamases. KPC-2 is a class A β-lactamase that is capable of hydrolyzing carbapenems and has become a widespread source of resistance to these drugs for Gram-negative bacteria. Determination of association and dissociation rate constants for binding between BLIP-II and KPC-2 reveals a very tight interaction with a calculated (koff/kon) equilibrium dissociation constant of 76 fM (76 × 10(-15) M).
Collapse
|
32
|
Ouellet E, Lund L, Lagally ET. Multiplexed surface plasmon resonance imaging for protein biomarker analysis. Methods Mol Biol 2013; 949:473-90. [PMID: 23329461 DOI: 10.1007/978-1-62703-134-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The reliable detection of ligand and analyte binding is of significant importance for the field of medical diagnostics. Recent advances in proteomics and the rapid expansion in the number of identified protein biomarkers enhance the need for reliable techniques for their identification in complex samples. Surface plasmon resonance imaging (SPRi) provides label-free detection of this binding process in real-time. This chapter details the fabrication of an SPR imaging instrument and its use in analyzing molecular binding interactions with the use of a high-density microfluidic SPRi chip, capable of multiplexed analysis as well as various immobilization chemistries. Controlled recovery of bound biomarkers is demonstrated to enable their identification using mass spectrometry. Finally, activated leukocyte cell adhesion molecule (ALCAM), a protein biomarker associated with a variety of cancers, is identified from human crude cell lysates using the microfluidic surface plasmon resonance imaging (SPRi) instrument.
Collapse
Affiliation(s)
- Eric Ouellet
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
33
|
Lab-on-a-Chip, Micro- and Nanoscale Immunoassay Systems, and Microarrays. THE IMMUNOASSAY HANDBOOK 2013. [PMCID: PMC7152144 DOI: 10.1016/b978-0-08-097037-0.00013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
34
|
Sherwood LJ, Hayhurst A. Hapten mediated display and pairing of recombinant antibodies accelerates assay assembly for biothreat countermeasures. Sci Rep 2012; 2:807. [PMID: 23150778 PMCID: PMC3495282 DOI: 10.1038/srep00807] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/17/2012] [Indexed: 11/14/2022] Open
Abstract
A bottle-neck in recombinant antibody sandwich immunoassay development is pairing, demanding protein purification and modification to distinguish captor from tracer. We developed a simple pairing scheme using microliter amounts of E. coli osmotic shockates bearing site-specific biotinylated antibodies and demonstrated proof of principle with a single domain antibody (sdAb) that is both captor and tracer for polyvalent Marburgvirus nucleoprotein. The system could also host pairs of different sdAb specific for the 7 botulinum neurotoxin (BoNT) serotypes, enabling recognition of the cognate serotype. Inducible supE co-expression enabled sdAb populations to be propagated as either phage for more panning from repertoires or expressed as soluble sdAb for screening within a single host strain. When combined with streptavidin-g3p fusions, a novel transdisplay system was formulated to retrofit a semi-synthetic sdAb library which was mined for an anti-Ebolavirus sdAb which was immediately immunoassay ready, thereby speeding up the recombinant antibody discovery and utilization processes.
Collapse
Affiliation(s)
- Laura J. Sherwood
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Andrew Hayhurst
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
35
|
Cant NE, Harrison SE. Impact of particulate antigens, such as Bacillus anthracis, on the uniformity of response across a biosensor flow cell as determined by GC-SPR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12410-12416. [PMID: 22881408 DOI: 10.1021/la300782q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biosensors are desired for the detection of a wide range of analytes in various scenarios, for example environmental monitoring for biological threats, from toxins to viruses and bacteria. Ideally a single sensor will be capable of simultaneous multianalyte detection. The varying nature, and in particular disparate size, of such a variety of analytes poses a significant challenge in the development of effective high-confidence instruments. Many existing biosensors employ functionalized flow cells in which spatially defined arrays of surface-immobilized recognition elements, such as antibodies, specifically capture their analyte of interest. To function optimally, arrays should provide equivalent responses for equivalent events across their active area. Experimental data obtained using a grating coupled surface plasmon resonance (GC-SPR) instrument, the BIAcore Flexchip, have revealed differences in response behaviors between proteinaceous and particulate analytes. In particular, the magnitude of responses seen with Bacillus anthracis spores appears to be influenced by shear and gravitational effects while those from soluble proteins are more uniform. We have explored this dependence to understand its fundamental impact on the successful implementation of multianalyte environmental biological detection systems.
Collapse
Affiliation(s)
- Nicola E Cant
- Detection Department, Dstl Porton Down, Salisbury, Wiltshire, UK.
| | | |
Collapse
|
36
|
Miersch S, Sidhu SS. Synthetic antibodies: concepts, potential and practical considerations. Methods 2012; 57:486-98. [PMID: 22750306 DOI: 10.1016/j.ymeth.2012.06.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 01/08/2023] Open
Abstract
The last 100 years of enquiry into the fundamental basis of humoral immunity has resulted in the identification of antibodies as key molecular sentinels responsible for the in vivo surveillance, neutralization and clearance of foreign substances. Intense efforts aimed at understanding and exploiting their exquisite molecular specificity have positioned antibodies as a cornerstone supporting basic research, diagnostics and therapeutic applications [1]. More recently, efforts have aimed to circumvent the limitations of developing antibodies in animals by developing wholly in vitro techniques for designing antibodies of tailored specificity. This has been realized with the advent of synthetic antibody libraries that possess diversity outside the scope of natural immune repertoires and are thus capable of yielding specificities not otherwise attainable. This review examines the convergence of technologies that have contributed to the development of combinatorial phage-displayed antibody libraries. It further explores the practical concepts that underlie phage display, antibody diversity and the methods used in the generation of and selection from phage-displayed synthetic antibody libraries, highlighting specific applications in which design approaches gave rise to specificities that could not easily be obtained with libraries based upon natural immune repertories.
Collapse
Affiliation(s)
- S Miersch
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
37
|
Gupta G, Sharma P, Sikarwar B, Merwyn S, Kaushik S, Boopathi M, Agarwal G, Singh B. Surface plasmon resonance immunosensor for the detection of Salmonella typhi antibodies in buffer and patient serum. Biosens Bioelectron 2012; 36:95-102. [DOI: 10.1016/j.bios.2012.03.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 03/27/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
|
38
|
Im H, Sutherland JN, Maynard JA, Oh SH. Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics. Anal Chem 2012; 84:1941-7. [PMID: 22235895 DOI: 10.1021/ac300070t] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We demonstrate an affordable low-noise surface plasmon resonance (SPR) instrument based on extraordinary optical transmission (EOT) in metallic nanohole arrays and quantify a broad range of antibody-ligand binding kinetics with equilibrium dissociation constants ranging from 200 pM to 40 nM. This nanohole-based SPR instrument is straightforward to construct, align, and operate, since it is built around a standard microscope and a portable fiber-optic spectrometer. The measured refractive index resolution of this platform is 3.1 × 10(-6) without on-chip cooling, which is among the lowest reported for SPR sensors based on EOT. This is accomplished via rapid full-spectrum acquisition in 10 ms followed by frame averaging of the EOT spectra, which is made possible by the production of template-stripped gold nanohole arrays with homogeneous optical properties over centimeter-sized areas. Sequential SPR measurements are performed using a 12-channel microfluidic flow cell after optimizing surface modification protocols and antibody injection conditions to minimize mass-transport artifacts. The immobilization of a model ligand, the protective antigen of anthrax on the gold surface, is monitored in real-time with a signal-to-noise ratio of ~860. Subsequently, real-time binding kinetic curves were measured quantitatively between the antigen and a panel of small, 25 kDa single-chain antibodies at concentrations down to 1 nM. These results indicate that nanohole-based SPR instruments have potential for quantitative antibody screening and as a general-purpose platform for integrating SPR sensors with other bioanalytical tools.
Collapse
Affiliation(s)
- Hyungsoon Im
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Kinetic screening is of paramount importance when it is to select custom-made antibodies, tailored for their respective scientific, diagnostic, or pharmaceutical application. Here a kinetic screening protocol is described, using a Biacore A100 surface plasmon resonance biosensor instrument. The assay is based on an Fc-specific antibody capture system. Antibodies from complex mixtures, like from mouse hybridoma supernatants are captured on the sensor surface in an oriented manner. The method uses a single injection of one antigen concentration for the determination of six relevant screening parameters, which comprehensively describe the antibody's kinetic rate profile and its valence mode. The method enables the scientist to rank and finally select rare and outstanding antibodies according to their kinetic signatures.
Collapse
|
40
|
Comparison of techniques to screen and characterize bacteria-specific hybridomas for high-quality monoclonal antibodies selection. Anal Biochem 2011; 421:26-36. [PMID: 22033288 DOI: 10.1016/j.ab.2011.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 09/28/2011] [Accepted: 10/02/2011] [Indexed: 11/22/2022]
Abstract
Antibodies are very important materials for diagnostics. A rapid and simple hybridoma screening method will help in delivering specific monoclonal antibodies. In this study, we systematically developed the first antibody array to screen for bacteria-specific monoclonal antibodies using Listeria monocytogenes as a bacteria model. The antibody array was developed to expedite the hybridoma screening process by printing hybridoma supernatants on a glass slide coated with an antigen of interest. This screening method is based on the binding ability of supernatants to the coated antigen. The bound supernatants were detected by a fluorescently labeled anti-mouse immunoglobulin. Conditions (slide types, coating, spotting, and blocking buffers) for antibody array construction were optimized. To demonstrate its usefulness, antibody array was used to screen a sample set of 96 hybridoma supernatants in comparison to ELISA. Most of the positive results identified by ELISA and antibody array methods were in agreement except for those with low signals that were undetectable by antibody array. Hybridoma supernatants were further characterized with surface plasmon resonance to obtain additional data on the characteristics of each selected clone. While the antibody array was slightly less sensitive than ELISA, a much faster and lower cost procedure to screen clones against multiple antigens has been demonstrated.
Collapse
|
41
|
Karsunke XYZ, Pschenitza M, Rieger M, Weber E, Niessner R, Knopp D. Screening and characterization of new monoclonal anti-benzo[a]pyrene antibodies using automated flow-through microarray technology. J Immunol Methods 2011; 371:81-90. [PMID: 21723870 DOI: 10.1016/j.jim.2011.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 06/08/2011] [Accepted: 06/16/2011] [Indexed: 11/30/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, which can cause cancer in humans. The maximum tolerable limit of benzo[a]pyrene (B[a]P) in drinking water was set to 10 ng/L by the European Commission (Council Directive 98/83/EC), because of its highly carcinogenic and mutagenic effect on humans. In the present investigation, mice were immunized with B[a]P-bovine serum albumin conjugates and 110 generated hybridoma cell lines screened by different techniques to identify clones that produce anti-B[a]P antibodies. Subsequently, a new automated flow-through biochip noncompetitive direct chemiluminescence immunoassay (CLEIA) was compared with conventional indirect and direct enzyme-linked immunosorbent assays (ELISAs). It was demonstrated that the microchip-based screening method compared to ELISA was fast and very sensitive with use of only nanoliter volumes of supernatant. Forty clones could be evaluated in less than 5 min. Six high affinity monoclonal antibodies with different cross-reactivities (CR) for individual PAHs were identified by the chip-based assay and indirect microtiter plate ELISA. In comparison, the direct ELISA in the microtiter plate failed to identify three of these clones. The four antibodies with the highest affinity had half maximum inhibitory concentrations (IC(50) values) between 0.31 and 0.92 μg/L for B[a]P. Affinity constants of these four antibodies were determined by surface plasmon resonance using a water soluble B[a]P-peptide. The observed CR pattern of the four monoclonal antibodies for 16 tested PAHs was quite different. Only one specific antibody for B[a]P was observed, while others were more suitable for class-specific PAH determination.
Collapse
Affiliation(s)
- Xaver Y Z Karsunke
- Institute of Hydrochemistry, Technische Universität München, Marchioninistr. 17, 81377 München, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Sensors based on surface plasmon resonance have demonstrated, over the last 2 decades, to be an effective method of studying biomolecular interactions without the need for labeling. Recently, it has been adapted to high-throughput use for imaging microarray binding in real time. This provides a promising platform - a label-free protein microarray system - for the study of disease. In this example, antibody microarrays are used to efficiently profile the secretion of proteins from a cell line exposed to varying concentrations of a toxic compound.
Collapse
|
43
|
Schreiber G, Haran G, Zhou HX. Fundamental aspects of protein-protein association kinetics. Chem Rev 2010; 109:839-60. [PMID: 19196002 DOI: 10.1021/cr800373w] [Citation(s) in RCA: 559] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- G Schreiber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | |
Collapse
|
44
|
Ray S, Mehta G, Srivastava S. Label-free detection techniques for protein microarrays: prospects, merits and challenges. Proteomics 2010; 10:731-48. [PMID: 19953541 PMCID: PMC7167936 DOI: 10.1002/pmic.200900458] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein microarrays, on which thousands of discrete proteins are printed, provide a valuable platform for functional analysis of the proteome. They have been widely used for biomarker discovery and to study protein–protein interactions. The accomplishments of DNA microarray technology, which had enabled massive parallel studies of gene expression, sparked great interest for the development of protein microarrays to achieve similar success at the protein level. Protein microarray detection techniques are often classified as being label‐based and label‐free. Most of the microarray applications have employed labelled detection such as fluorescent, chemiluminescent and radioactive labelling. These labelling strategies have synthetic challenges, multiple label issues and may exhibit interference with the binding site. Therefore, development of sensitive, reliable, high‐throughput, label‐free detection techniques are now attracting significant attention. Label‐free detection techniques monitor biomolecular interactions and simplify the bioassays by eliminating the need for secondary reactants. Moreover, they provide quantitative information for the binding kinetics. In this article, we will review several label‐free techniques, which offer promising applications for the protein microarrays, and discuss their prospects, merits and challenges.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | |
Collapse
|
45
|
Bronner V, Denkberg G, Peled M, Elbaz Y, Zahavi E, Kasoto H, Reiter Y, Notcovich A, Bravman T. Therapeutic antibodies: Discovery and development using the ProteOn XPR36 biosensor interaction array system. Anal Biochem 2010; 406:147-56. [PMID: 20624370 DOI: 10.1016/j.ab.2010.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/27/2010] [Accepted: 07/05/2010] [Indexed: 11/29/2022]
Abstract
Therapeutic monoclonal antibodies are becoming a significant and rapidly growing class of therapeutic pharmaceuticals. Their discovery and development requires fast and high-throughput methodologies for screening and selecting appropriate candidate antibodies having high affinity for the target as well as high specificity and low cross-reactivity. This study demonstrates the use of the ProteOn XPR36 protein interaction array system and its novel approach, termed One-Shot Kinetics, for the rapid screening and selection of high-affinity antibodies. This approach allows multiple quantitative protein binding analyses in parallel, providing association, dissociation, and affinity constants for several antibodies or supernatants simultaneously in one experiment. We show that the ProteOn XPR36 system is a valuable tool for use across multiple stages of the therapeutic antibody discovery and development process, enabling efficient and rapid screening after panning, affinity maturation, assay validation, and clone selection.
Collapse
Affiliation(s)
- Vered Bronner
- Bio-Rad Laboratories, Gutwirth Park, Technion, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
von Muhlen MG, Brault ND, Knudsen SM, Jiang S, Manalis SR. Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. Anal Chem 2010; 82:1905-10. [PMID: 20148583 DOI: 10.1021/ac9027356] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Improved methods are needed for routine, inexpensive monitoring of biomarkers that could facilitate earlier detection and characterization of cancer. Suspended microchannel resonators (SMRs) are highly sensitive, batch-fabricated microcantilevers with embedded microchannels that can directly quantify adsorbed mass via changes in resonant frequency. As in other label-free detection methods, biomolecular measurements in complex media such as serum are challenging due to high background signals from nonspecific binding. In this report, we demonstrate that carboxybetaine-derived polymers developed to adsorb directly onto SMR SiO(2) surfaces act as ultralow fouling and functionalizable surface coatings. Coupled with a reference microcantilever, this approach enables detection of activated leukocyte cell adhesion molecule (ALCAM), a model cancer biomarker, in undiluted serum with a limit of detection of 10 ng/mL.
Collapse
Affiliation(s)
- Marcio G von Muhlen
- Department of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
47
|
Choi CJ, Belobraydich AR, Chan LL, Mathias PC, Cunningham BT. Comparison of label-free biosensing in microplate, microfluidic, and spot-based affinity capture assays. Anal Biochem 2010; 405:1-10. [PMID: 20553867 DOI: 10.1016/j.ab.2010.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/27/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
Abstract
Using both experimental assays and fluid-dynamic finite element simulation models, we directly compared the achievable performance limits of four distinct assay configurations for label-free detection of an analyte from a test sample on a biosensor surface. The assay configurations studied in this work included a biosensor incorporated into the bottom surface of a microplate well and a microfluidic channel. For each configuration, we compared assay performance for the scenario in which the entire bottom surface of the fluid-handling vessel is coated with capture ligands with assay performance for the scenario in which the capture ligands are applied in the form of localized spots. As a model system, we used detection of the protein biomarker tumor necrosis factor-alpha (TNF-alpha) using immobilized TNF-alpha capture antibody. Results show that the microfluidic assay format dramatically reduces the time required to establish a stable equilibrium. Spot-based assays are advantageous for microplate-based detection for reducing the time required for equilibrium sensor response. The results derived are generally applicable to any label-free biosensor technology and any ligand-analyte system with adjustable variables that include sensor mass density sensitivity, analyte-ligand adsorption/desorption rate constants, immobilized ligand density, flow channel geometry, flow rate, and spot size.
Collapse
Affiliation(s)
- Charles J Choi
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Some of the rate theories that are most useful for modeling biological processes are reviewed. By delving into some of the details and subtleties in the development of the theories, the review will hopefully help the reader gain a more than superficial perspective. Examples are presented to illustrate how rate theories can be used to generate insight at the microscopic level into biomolecular behaviors. An attempt is made to clear up a number of misconceptions in the literature regarding popular rate theories, including the appearance of Planck's constant in the transition-state theory and the Smoluchowski result as an upper limit for protein-protein and protein-DNA association rate constants. Future work in combining the implementation of rate theories through computer simulations with experimental probes of rate processes, and in modeling effects of intracellular environments so that theories can be used for generating rate constants for systems biology studies is particularly exciting.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
49
|
Scott CJ, Taggart CC. Biologic protease inhibitors as novel therapeutic agents. Biochimie 2010; 92:1681-8. [PMID: 20346385 DOI: 10.1016/j.biochi.2010.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/16/2010] [Indexed: 12/23/2022]
Abstract
Deregulated proteolytic activities frequently have causative or exacerbative functions in pathological conditions such as cancer and inflammatory disease. Many proteases therefore represent therapeutic targets, but the generation of successful small molecule drugs is often limited by the ability to achieve sufficient specificity of action. Consequently, several proteases have been deemed as unsuitable drug targets due to the inability to target them successfully. In an effort to circumvent these issues, much interest has recently focused on the development and application of biologic inhibitors. In this review, the latest research in the development of biologic protease inhibitors is examined. This includes a review of engineered kunitz and other inhibitory domains as well as the application of antibodies as therapeutically viable inhibitors.
Collapse
Affiliation(s)
- Christopher J Scott
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | | |
Collapse
|
50
|
Ouellet E, Lausted C, Lin T, Yang CWT, Hood L, Lagally ET. Parallel microfluidic surface plasmon resonance imaging arrays. LAB ON A CHIP 2010; 10:581-8. [PMID: 20162233 DOI: 10.1039/b920589f] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Surface plasmon resonance imaging (SPRi) is a label-free technique used for the quantitation of binding affinities and concentrations for a wide variety of target molecules. Although SPRi is capable of determining binding constants for multiple ligands in parallel, current commercial instruments are limited to a single analyte stream on multiple ligand spots. Measurement of binding kinetics requires the serial introduction of different analyte concentrations; such repeated experiments are conducted manually and are therefore time-intensive. To address these challenges, we have developed an integrated microfluidic array using soft lithography techniques for high-throughput SPRi-based detection and determination of binding affinities of antibodies against protein targets. The device consists of 264 element-addressable chambers isolated by microvalves. The resulting 700 pL chamber volumes, combined with a serial dilution network for simultaneous interrogation of up to six different analyte concentrations, allow for further speeding detection times. To test for device performance, human alpha-thrombin was immobilized on the sensor surface and anti-human alpha-thrombin IgG was injected across the surface at different concentrations. The equilibrium dissociation constant was determined to be 5.0 +/- 1.9 nM, which agrees well with values reported in the literature. The interrogation of multiple ligands to multiple analytes in a single device was also investigated and samples were recovered with no cross-contamination. Since each chamber can be addressed independently, this array is capable of interrogating binding events from up to 264 different immobilized ligands against multiple analytes in a single experiment. The development of high-throughput protein analytic measurements is a critical technology for systems approaches to biology and medicine.
Collapse
Affiliation(s)
- Eric Ouellet
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | | | | | | | | | |
Collapse
|