1
|
Dodd RJ, Blundell CD, Sattelle BM, Enghild JJ, Milner CM, Day AJ. Chemical modification of hyaluronan oligosaccharides differentially modulates hyaluronan-hyaladherin interactions. J Biol Chem 2024; 300:107668. [PMID: 39128716 PMCID: PMC11460632 DOI: 10.1016/j.jbc.2024.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
The glycosaminoglycan hyaluronan (HA) is a ubiquitous, nonsulfated polysaccharide with diverse biological roles mediated through its interactions with HA-binding proteins (HABPs). Most HABPs belong to the Link module superfamily, including the major HA receptor, CD44, and secreted protein TSG-6, which catalyzes the covalent transfer of heavy chains from inter-α-inhibitor onto HA. The structures of the HA-binding domains (HABDs) of CD44 (HABD_CD44) and TSG-6 (Link_TSG6) have been determined and their interactions with HA extensively characterized. The mechanisms of binding are different, with Link_TSG6 interacting with HA primarily via ionic and CH-π interactions, whereas HABD_CD44 binds solely via hydrogen bonds and van der Waals forces. Here, we exploit these differences to generate HA oligosaccharides, chemically modified at their reducing ends, that bind specifically and differentially to these target HABPs. Hexasaccharides (HA6AN) modified with 2- or 3-aminobenzoic acid (HA6-2AA, HA6-3AA) or 2-amino-4-methoxybenzoic acid (HA6-2A4MBA), had increased affinities for Link_TSG6 compared to unmodified HA6AN. These modifications did not increase the affinity for CD44_HABD. A model of HA6-2AA (derived from the solution dynamic 3D structure of HA4-2AA) was docked into the Link_TSG6 structure, providing evidence that the 2AA-carboxyl forms a salt bridge with Arginine-81. These modeling results informed a second series of chemical modifications for HA oligosaccharides, which again showed differential binding to the two proteins. Several modifications to HA4 and HA6 were found to convert the oligosaccharide into substrates for heavy chain transfer, whereas unmodified HA4 and HA6 are not. This study has generated valuable research tools to further understand HA biology.
Collapse
Affiliation(s)
- Rebecca J Dodd
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | | | | | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Caroline M Milner
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Anthony J Day
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
2
|
Wollina U, Goldman A, Kocic H, Andjelkovic T, Bogdanovic D, Kokić IK. Impurities in Hyaluronic Acid Dermal Fillers? A Narrative Review on Nonanimal Cross-Linked Fillers. Facial Plast Surg Aesthet Med 2024; 26:190-194. [PMID: 38387011 DOI: 10.1089/fpsam.2023.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Importance: Nonanimal cross-linked hyaluronic acid (HA) dermal fillers are among the most versatile tools in minimal invasive esthetic medicine. Filler injections aim to volumize, provide contour, and reduce wrinkles and skinfolds. In the hand of the experienced user, HA fillers have an excellent safety profile. Nevertheless, adverse events have been reported related to poor injection techniques, infection, and immune reactions. Observations: In this review, the focus is on filler impurities. Impurities can originate from the fermentation process, crosslinking, packaging, and contamination. Impurities consist of particular and nonparticular matter. We discuss possible risks for the patient to be treated with HA fillers. Conclusions and Relevance: Impurities of dermal fillers bear a potential risk for patients, such as delayed autoimmune and inflammatory reactions, biofilm formation, and exposure to leachable Endocrine Disrupting Chemicals. Amount and quality of impurities can be considered as one of the quality parameters of commercially fillers. Considering patient safety, filler impurities should be further reduced.
Collapse
Affiliation(s)
- Uwe Wollina
- Department of Dermatology and Allergology, Municipal Hospital Dresden, Academic Teaching Hospital, Dresden, Germany
| | - Alberto Goldman
- Department of Plastic Surgery, Hospital São Lucas da PUCRS, Porto Alegre/RS, Brazil
| | - Hristina Kocic
- Clinic for Skin and Venereal Diseases, UCC Nis, Medical Faculty, University of Nis, Nis, Serbia
| | - Tatjana Andjelkovic
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Danica Bogdanovic
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Ivana Kostić Kokić
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| |
Collapse
|
3
|
Chatzigeorgiou S, Jílková J, Korecká L, Janyšková R, Hermannová M, Šimek M, Čožíková D, Slováková M, Bílková Z, Bobek J, Černý Z, Čihák M, Velebný V. Preparation of hyaluronan oligosaccharides by a prokaryotic beta-glucuronidase: Characterization of free and immobilized forms of the enzyme. Carbohydr Polym 2023; 317:121078. [PMID: 37364952 DOI: 10.1016/j.carbpol.2023.121078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Popularity of hyaluronan (HA) in the cosmetics and pharmaceutical industries, led to the investigation and development of new HA-based materials, with enzymes playing a key role. Beta-D-glucuronidases catalyze the hydrolysis of a beta-D-glucuronic acid residue from the non-reducing end of various substrates. However, lack of specificity towards HA for most beta-D-glucuronidases, in addition to the high cost and low purity of those active on HA, have prevented their widespread application. In this study, we investigated a recombinant beta-glucuronidase from Bacteroides fragilis (rBfGUS). We demonstrated the rBfGUS's activity on native, modified, and derivatized HA oligosaccharides (oHAs). Using chromogenic beta-glucuronidase substrate and oHAs, we characterized the enzyme's optimal conditions and kinetic parameters. Additionally, we evaluated rBfGUS's activity towards oHAs of various sizes and types. To increase reusability and ensure the preparation of enzyme-free oHA products, rBfGUS was immobilized on two types of magnetic macroporous bead cellulose particles. Both immobilized forms of rBfGUS demonstrated suitable operational and storage stabilities, and their activity parameters were comparable to the free form. Our findings suggest that native and derivatized oHAs can be prepared using this bacterial beta-glucuronidase, and a novel biocatalyst with enhanced operational parameters has been developed with a potential for industrial use.
Collapse
Affiliation(s)
- Sofia Chatzigeorgiou
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic; Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Jílková
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| | - Lucie Korecká
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic.
| | - Radka Janyšková
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic
| | | | - Matej Šimek
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic
| | - Dagmar Čožíková
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic
| | - Marcela Slováková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Zuzana Bílková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Jan Bobek
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic; Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic; Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná sq. 3105, 272 01 Kladno, Czech Republic
| | - Zbyněk Černý
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic
| | - Matouš Čihák
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic; Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czech Republic
| |
Collapse
|
4
|
Šimek M, Turková K, Schwarzer M, Nešporová K, Kubala L, Hermannová M, Foglová T, Šafránková B, Šindelář M, Šrůtková D, Chatzigeorgiou S, Novotná T, Hudcovic T, Velebný V. Molecular weight and gut microbiota determine the bioavailability of orally administered hyaluronic acid. Carbohydr Polym 2023; 313:120880. [PMID: 37182970 DOI: 10.1016/j.carbpol.2023.120880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
The ability of hyaluronan as a dietary supplement to increase skin moisture and relieve knee pain has been demonstrated in several clinical studies. To understand the mechanism of action, determining hyaluronan's bioavailability and in vivo fate is crucial. Here, we used 13C-hyaluronan combined with LC-MS analysis to compare the absorption and metabolism of oral hyaluronan in germ-free and conventional wild-type mice. The presence of Bacteroides spp. in the gut was crucial for hyaluronan absorption. Specific microorganisms cleave hyaluronan into unsaturated oligosaccharides (<3 kDa) which are partially absorbed through the intestinal wall. The remaining hyaluronan fragments are metabolized into short-chain fatty acids, which are only metabolites available to the host. The poor bioavailability (~0.2 %) of oral hyaluronan indicates that the mechanism of action is the result of the systematic regulatory function of hyaluronan or its metabolites rather than the direct effects of hyaluronan at distal sites of action (skin, joints).
Collapse
|
5
|
Analysis of hyaluronan and its derivatives using chromatographic and mass spectrometric techniques. Carbohydr Polym 2020; 250:117014. [DOI: 10.1016/j.carbpol.2020.117014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023]
|
6
|
Construction of saturated odd- and even-numbered hyaluronan oligosaccharide building block library. Carbohydr Polym 2020; 231:115700. [DOI: 10.1016/j.carbpol.2019.115700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/30/2019] [Accepted: 11/30/2019] [Indexed: 11/23/2022]
|
7
|
Sedláček J, Hermannová M, Mrázek J, Buffa R, Lišková P, Šatínský D, Velebný V. Insight into the distribution of amino groups along the chain of chemically deacetylated hyaluronan. Carbohydr Polym 2019; 225:115156. [DOI: 10.1016/j.carbpol.2019.115156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/03/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022]
|
8
|
Čožíková D, Šílová T, Moravcová V, Šmejkalová D, Pepeliaev S, Velebný V, Hermannová M. Preparation and extensive characterization of hyaluronan with narrow molecular weight distribution. Carbohydr Polym 2017; 160:134-142. [DOI: 10.1016/j.carbpol.2016.12.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/06/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022]
|
9
|
Wende FJ, Gohil S, Nord LI, Helander Kenne A, Sandström C. 1D NMR methods for determination of degree of cross-linking and BDDE substitution positions in HA hydrogels. Carbohydr Polym 2017; 157:1525-1530. [DOI: 10.1016/j.carbpol.2016.11.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/25/2016] [Accepted: 11/10/2016] [Indexed: 12/01/2022]
|
10
|
New insights into the action of bacterial chondroitinase AC I and hyaluronidase on hyaluronic acid. Carbohydr Polym 2017; 158:85-92. [DOI: 10.1016/j.carbpol.2016.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 01/22/2023]
|
11
|
Lv M, Wang M, Cai W, Hao W, Yuan P, Kang Z. Characterisation of separated end hyaluronan oligosaccharides from leech hyaluronidase and evaluation of angiogenesis. Carbohydr Polym 2016; 142:309-16. [PMID: 26917404 DOI: 10.1016/j.carbpol.2016.01.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 12/14/2022]
Abstract
Hyaluronan oligosaccharides (o-HAs), especially saturated o-HAs, have attracted intensive attention due to their potential applications in medical treatments. In this study, the hydrolysis process of leech hyaluronidase (LHase) towards the hyaluronan was investigated by HPLC and HPLC/ESI-MS. The proportions of hyaluronan tetrasaccharide (HA4) with hexasaccharide (HA6), end products, were illustrated to have a relationship with the amount of LHase. Higher yield of HA4 was achieved with higher activity of LHase. After optimisation of the packing resin and operation parameters (balanced pH, elution concentration, elution volume and elution flow rate), the highly pure HA4 and HA6 were efficiently separated and prepared by combining ion exchange Q-Sepharose Fast Flow and size exclusion column chromatography. Compared with o-HAs (average Mr of 4000 Da), HA4 and HA6 were demonstrated to show higher activity for promoting angiogenesis, which was similar with the corresponding HA4 and HA6 produced by bovine testicular hyaluronidase. The pure HA4 and HA6 that prepared from LHase will attract intensive studies and be used in potential applications in near future.
Collapse
Affiliation(s)
- Mengxian Lv
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Miao Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| | - Weiwei Cai
- Laboratory of Tumor Pharmacology, Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Wenxing Hao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Panhong Yuan
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Rothenhöfer M, Grundmann M, Bernhardt G, Matysik FM, Buschauer A. High performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) for the sensitive determination of hyaluronan oligosaccharides. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 988:106-15. [DOI: 10.1016/j.jchromb.2015.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/28/2023]
|
13
|
Kooy FK, Beeftink HH, Eppink MH, Tramper J, Eggink G, Boeriu CG. Kinetic and structural analysis of two transferase domains in Pasteurella multocida hyaluronan synthase. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Jin P, Kang Z, Zhang N, Du G, Chen J. High-yield novel leech hyaluronidase to expedite the preparation of specific hyaluronan oligomers. Sci Rep 2014; 4:4471. [PMID: 24667183 PMCID: PMC3966032 DOI: 10.1038/srep04471] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/10/2014] [Indexed: 11/25/2022] Open
Abstract
Hyaluronidases (HAases), particularly leech HAases, have attracted intense attention due to their broad applications in medical treatments and great potential for the enzymatic production of hyaluronan oligosaccharides. However, little is known about this third interesting family of HAases. Here, we applied the random amplification of cDNA ends polymerase chain reaction (RACE-PCR) approach to identify the first leech HAase-encoding gene. By combining protein engineering and high-density culture, we achieved high-level production (8.42 × 105 U ml−1) in the yeast Pichia pastoris secretory expression system. Compared with the commercial bovine testicular HAase, the recombinant leech HAase exhibited superior enzymatic properties. Furthermore, analysis of the hydrolytic process suggested that this novel enzyme adopts a nonprocessive endolytic mode, yielding a narrow-spectrum of specific HA oligosaccharides with different incubation times. Large-scale production of this novel leech HAase will not only greatly promote medical applications but also facilitate the enzymatic production of specific HA oligosaccharides.
Collapse
Affiliation(s)
- Peng Jin
- 1] Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China [2] The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China [3] School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhen Kang
- 1] Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China [2] The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China [3] School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China [4] Synergetic Innovation Center of Modern Industrial Fermentation, Wuxi 214122, P. R. China
| | - Na Zhang
- 1] Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China [2] The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China [3] School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Guocheng Du
- 1] Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China [2] School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China [3] The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China [4] Synergetic Innovation Center of Modern Industrial Fermentation, Wuxi 214122, P. R. China
| | - Jian Chen
- 1] Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China [2] School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China [3] National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P. R. China [4] Synergetic Innovation Center of Modern Industrial Fermentation, Wuxi 214122, P. R. China
| |
Collapse
|
15
|
Higman VA, Briggs DC, Mahoney DJ, Blundell CD, Sattelle BM, Dyer DP, Green DE, DeAngelis PL, Almond A, Milner CM, Day AJ. A refined model for the TSG-6 link module in complex with hyaluronan: use of defined oligosaccharides to probe structure and function. J Biol Chem 2014; 289:5619-34. [PMID: 24403066 PMCID: PMC3937638 DOI: 10.1074/jbc.m113.542357] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 11/25/2022] Open
Abstract
Tumor necrosis factor-stimulated gene-6 (TSG-6) is an inflammation-associated hyaluronan (HA)-binding protein that contributes to remodeling of HA-rich extracellular matrices during inflammatory processes and ovulation. The HA-binding domain of TSG-6 consists solely of a Link module, making it a prototypical member of the superfamily of proteins that interacts with this high molecular weight polysaccharide composed of repeating disaccharides of D-glucuronic acid and N-acetyl-D-glucosamine (GlcNAc). Previously we modeled a complex of the TSG-6 Link module in association with an HA octasaccharide based on the structure of the domain in its HA-bound conformation. Here we have generated a refined model for a HA/Link module complex using novel restraints identified from NMR spectroscopy of the protein in the presence of 10 distinct HA oligosaccharides (from 4- to 8-mers); the model was then tested using unique sugar reagents, i.e. chondroitin/HA hybrid oligomers and an octasaccharide in which a single sugar ring was (13)C-labeled. The HA chain was found to make more extensive contacts with the TSG-6 surface than thought previously, such that a D-glucuronic acid ring makes stacking and ionic interactions with a histidine and lysine, respectively. Importantly, this causes the HA to bend around two faces of the Link module (resembling the way that HA binds to CD44), potentially providing a mechanism for how TSG-6 can reorganize HA during inflammation. However, the HA-binding site defined here may not play a role in TSG-6-mediated transfer of heavy chains from inter-α-inhibitor onto HA, a process known to be essential for ovulation.
Collapse
Affiliation(s)
- Victoria A. Higman
- From the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - David C. Briggs
- Wellcome Trust Centre for Cell Matrix Research
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - David J. Mahoney
- From the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Charles D. Blundell
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Benedict M. Sattelle
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Douglas P. Dyer
- Wellcome Trust Centre for Cell Matrix Research
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Dixy E. Green
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Paul L. DeAngelis
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Andrew Almond
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Caroline M. Milner
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Anthony J. Day
- Wellcome Trust Centre for Cell Matrix Research
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| |
Collapse
|
16
|
Needham CJ, Williams AK, Chew SA, Kasper FK, Mikos AG. Engineering a polymeric gene delivery vector based on poly(ethylenimine) and hyaluronic acid. Biomacromolecules 2012; 13:1429-37. [PMID: 22455481 PMCID: PMC3351541 DOI: 10.1021/bm300145q] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, the effects of primary amines, ligand targeting, and overall charge on the effectiveness of branched poly(ethylenimine)-hyaluronic acid conjugate (bPEI-HA) zwitterionic gene delivery vectors are investigated. To elucidate the relative importance of each of these parameters, we explored the zeta potential, cytotoxicity, and transfection efficiency for a variety of formulations of bPEI-HA. It was found that the length of the hyaluronic acid (HA) oligosaccharide had the most significant effect on cytotoxicity and transfection efficiency with human mesenchymal stem cells. Test groups of bPEI incorporating HA with a length of 10 saccharides had significantly higher transfection efficiency (14.6 ± 2.0%) and lower cytotoxicity than other formulations tested, with the cytotoxicity of the group containing the greatest mass of 10 saccharide showing similar results as the positive controls at the highest polymer concentration (100 μg/mL). Additionally, molar incorporation of HA, as opposed to the saccharide length and HA mass incorporation, had the greatest effect on zeta potential but a minor effect on both cytotoxicity and transfection efficiency. This work demonstrates the relative importance of each of these tunable design criteria when creating a zwitterionic polymeric gene delivery vector and provides useful specific information regarding the design of bPEI-HA gene delivery vectors.
Collapse
Affiliation(s)
- Clark J. Needham
- Department of Bioengineering, Rice University, Rice University, 6100 Main St, Houston, TX 77005
| | - Austin K. Williams
- Department of Biochemistry, Rice University, Rice University, 6100 Main St, Houston, TX 77005
| | - Sue Anne Chew
- Department of Bioengineering, Rice University, Rice University, 6100 Main St, Houston, TX 77005
| | - F. Kurtis Kasper
- Department of Bioengineering, Rice University, Rice University, 6100 Main St, Houston, TX 77005
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Rice University, 6100 Main St, Houston, TX 77005
| |
Collapse
|
17
|
Chavaroche AAE, van den Broek LAM, Boeriu C, Eggink G. Synthesis of heparosan oligosaccharides by Pasteurella multocida PmHS2 single-action transferases. Appl Microbiol Biotechnol 2011; 95:1199-210. [PMID: 22198719 PMCID: PMC3418500 DOI: 10.1007/s00253-011-3813-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 12/15/2022]
Abstract
Pasteurella multocida heparosan synthase PmHS2 is a dual action glycosyltransferase that catalyzes the polymerization of heparosan polymers in a non-processive manner. The two PmHS2 single-action transferases, obtained previously by site-directed mutagenesis, have been immobilized on Ni(II)-nitrilotriacetic acid agarose during the purification step. A detailed study of the polymerization process in the presence of non-equal amounts of PmHS2 single-action transferases revealed that the glucuronyl transferase (PmHS2-GlcUA(+)) is the limiting catalyst in the polymerization process. Using experimental design, it was determined that the N-acetylglucosaminyl transferase (PmHS2-GlcNAc(+)) plays an important role in the control of heparosan chain elongation depending on the number of heparosan chains and the UDP-sugar concentrations present in the reaction mixture. Furthermore, for the first time, the synthesis of heparosan oligosaccharides alternately using PmHS2-GlcUA(+) and PmHS2-GlcNAc(+) is reported. It was shown that the synthesis of heparosan oligosaccharides by PmHS2 single-action transferases do not require the presence of template molecules in the reaction mixture.
Collapse
Affiliation(s)
- Anaïs A E Chavaroche
- Bioprocess Engineering Group, Wageningen University and Research Center, P.O. Box 8129, 6700 EV, Wageningen, the Netherlands
| | | | | | | |
Collapse
|
18
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
19
|
A complete hyaluronan hydrodynamic characterization using a size exclusion chromatography-triple detector array system during in vitro enzymatic degradation. Anal Biochem 2010; 404:21-9. [PMID: 20399193 DOI: 10.1016/j.ab.2010.04.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 11/27/2022]
Abstract
Size exclusion chromatography coupled with triple detection (online laser light scattering, refractometry, and viscosimetry) (SEC-TDA) was applied for the study of hyaluronan (HA) fragments produced during hydrolysis catalyzed by bovine testicular hyaluronidase (BTH). The main advantage this approach provides is the complete hydrodynamic characterization without requiring further experiments. HA was hydrolyzed using several BTH amounts and for increasing incubation times. Fragments were characterized in terms of weight and number average molecular weights (M(w) and M(n), respectively), polydispersity index (M(w)/M(n)), hydrodynamic radius (R(h)), and intrinsic viscosity ([eta]). The Mark-Houwink-Sakurada (MHS) curves (log[eta] versus logM(w)) were then derived directly. Fragments covering a whole range of M(w) (10-900kDa) and size (R(h)=4-81nm) and presenting a rather narrow distribution of molar masses (M(w)/M(n)=1.6-1.7) were produced. From the MHS curves, HA conformation resulted in a change from a random coil toward a rigid rod structure while decreasing the M(w). HA enzymatic hydrolysis in the presence of a BTH inhibitor was also monitored, revealing that inhibition profiles are affected by ionic strength. Finally, a comparison of the kinetic data derived from SEC-TDA with the data from rheological measurements suggested different strengths of the two methods in the determination of the depolymerization rate depending on the hydrolysis conditions.
Collapse
|
20
|
Direct purification and immobilization of recombinant hyaluronan lyase from unclarified feedstock using immobilized metal affinity magnetite for oligo-hyaluronan preparation. Biochem Eng J 2007. [DOI: 10.1016/j.bej.2007.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Stern R, Kogan G, Jedrzejas MJ, Soltés L. The many ways to cleave hyaluronan. Biotechnol Adv 2007; 25:537-57. [PMID: 17716848 DOI: 10.1016/j.biotechadv.2007.07.001] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/06/2007] [Accepted: 07/11/2007] [Indexed: 01/30/2023]
Abstract
Hyaluronan is being used increasingly as a component of artificial matrices and in bioengineering for tissue scaffolding. The length of hyaluronan polymer chains is now recognized as informational, involving a wide variety of size-specific functions. Inadvertent scission of hyaluronan can occur during the process of preparation. On the other hand, certain size-specific hyaluronan fragments may be desirable, endowing the finished bioengineered product with specific properties. In this review, the vast arrays of reactions that cause scission of hyaluronan polymers is presented, including those on an enzymatic, free radical, and chemical basis.
Collapse
Affiliation(s)
- Robert Stern
- Department of Pathology, School of Medicine, UCSF Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0511, USA
| | | | | | | |
Collapse
|
22
|
Volpi N. On-line HPLC/ESI-MS separation and characterization of hyaluronan oligosaccharides from 2-mers to 40-mers. Anal Chem 2007; 79:6390-7. [PMID: 17608452 DOI: 10.1021/ac070837d] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new method for the separation and identification of oligosaccharides obtained by enzymatic digestion of hyaluronic acid (HA) with hyaluronidase (EC 3.2.1.35) using on-line high-performance liquid chromatography/electrospray mass spectrometry (HPLC/ESI-MS) is presented. Reversed-phase ion pairing-HPLC, based on tributylamine salts and a volatile mobile phase, provided excellent chromatographic resolution and separation was achieved for HA oligosaccharides containing 2-40 monomers (from 2- to 40-mers). Using the on-line ion trap mass analyzer, complete identification and structural information for each HA oligomer species was obtained. In particular, a series of negatively charged species of different m/z ratios are seen for each oligosaccharide. Smaller HA species, from 2- to 4-mers, exhibit mainly [M-H](-1) anions, whereas the 6-10-mers exist predominantly as the charge state of -2. The HA oligomers from 12- to 18-mers are mainly represented by [M-3H](-3) anions while species from 20- to 28/30-mers are characterized by a charge state of -4. HA oligosaccharides from 32- to 40-mers exist as [M-5H](-5) anions. Furthermore, for smaller HA species, from 4/6- to 18/20-mers, ESI-MS revealed, generally in low relative abundance, anions related to the loss of one/two monosaccharide unit(s) from the oligomers, and no odd-numbered anions were produced for HA species greater than 20-mers.
Collapse
Affiliation(s)
- Nicola Volpi
- Department of Biologia Animale, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
23
|
Blundell CD, Almond A. Temperature dependencies of amide 1H- and 15N-chemical shifts in hyaluronan oligosaccharides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2007; 45:430-3. [PMID: 17372972 DOI: 10.1002/mrc.1969] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Temperature coefficients (Deltadelta/DeltaT) of amide chemical shifts of N-acetylglucosamine residues have been measured in a range of oligosaccharides of the important vertebrate polysaccharide hyaluronan. Odd- and even-numbered oligosaccharides with glucuronic acid, Delta-4,5-unsaturated glucuronic acid and N-acetylglucosamine at the termini were investigated. All amide proton temperature coefficients were only slightly less negative (-6.9 to - 9.1 ppb/ degrees C) than those of amide protons in free exchange with water (approximately equal to -11 ppb/ degrees C), indicating an absence of persistent intramolecular hydrogen bonds. With the exception of amide groups in reducing-terminal N-acetylglucosamine rings, all amide proton environments have the same temperature coefficient (-6.9 ppb/ degrees C), irrespective of differences in amide group chemical shifts and (3)J(HH) coupling constants, i.e. they do not sense subtle differences in orientation of the amide group. Amide nitrogen temperature coefficients report the same phenomena but with greater sensitivity. These data provide a set of reference values for temperature coefficients measured in other carbohydrates with acetamido sugars.
Collapse
Affiliation(s)
- Charles D Blundell
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, Princess Street, Manchester M1 7DN, UK
| | | |
Collapse
|
24
|
Blundell CD, Mahoney DJ, Cordell MR, Almond A, Kahmann JD, Perczel A, Taylor JD, Campbell ID, Day AJ. Determining the molecular basis for the pH-dependent interaction between the link module of human TSG-6 and hyaluronan. J Biol Chem 2007; 282:12976-88. [PMID: 17307731 DOI: 10.1074/jbc.m611713200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TSG-6 is an inflammation-associated hyaluronan (HA)-binding protein that has anti-inflammatory and protective functions in arthritis and asthma as well as a critical role in mammalian ovulation. The interaction between TSG-6 and HA is pH-dependent, with a marked reduction in affinity on increasing the pH from 6.0 to 8.0. Here we have investigated the mechanism underlying this pH dependence using a combined approach of site-directed mutagenesis, NMR, isothermal titration calorimetry and microtiter plate assays. Analysis of single-site mutants of the TSG-6 Link module indicated that the loss in affinity above pH 6.0 is mediated by the change in ionization state of a histidine residue (His(4)) that is not within the HA-binding site. To understand this in molecular terms, the pH-dependent folding profile and the pK(a) values of charged residues within the Link module were determined using NMR. These data indicated that His(4) makes a salt bridge to one side-chain oxygen atom of a buried aspartate residue (Asp(89)), whereas the other oxygen is simultaneously hydrogen-bonded to a key HA-binding residue (Tyr(12)). This molecular network transmits the change in ionization state of His(4) to the HA-binding site, which explains the loss of affinity at high pH. In contrast, simulations of the pH affinity curves indicate that another histidine residue, His(45), is largely responsible for the gain in affinity for HA between pH 3.5 and 6.0. The pH-dependent interaction of TSG-6 with HA (and other ligands) provides a means of differentially regulating the functional activity of this protein in different tissue microenvironments.
Collapse
Affiliation(s)
- Charles D Blundell
- Medical Research Council Immunochemistry Unit, University of Oxford, South Parks Road, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Blundell CD, Reed MAC, Almond A. Complete assignment of hyaluronan oligosaccharides up to hexasaccharides. Carbohydr Res 2006; 341:2803-15. [PMID: 17056022 DOI: 10.1016/j.carres.2006.09.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 09/18/2006] [Accepted: 09/27/2006] [Indexed: 11/16/2022]
Abstract
The glycosaminoglycan hyaluronan is involved in a diverse range of physiological and diseases processes and comprises repeated disaccharide units of N-acetyl-d-glucosamine (GlcNAc) and d-glucuronic acid (GlcA). A molecular description of the solution conformation of HA is required to account for this biology, which is best attained using nuclear magnetic resonance (NMR). NMR studies of the polymer, however, are frustrated by resonance overlap arising from the highly degenerate structure. In contrast, end-effects in oligosaccharides can produce some chemical shift dispersion, giving the possibility that their conformational properties can be measured and extrapolated to models of the polymer. We report the complete resolution and assignment of (1)H, (13)C and (15)N nuclei in hyaluronan oligosaccharides with seven different naturally occurring terminal rings. At 900MHz, all (1)H nuclei in the hexasaccharide GlcA-beta-(1-->3)-GlcNAc-beta-(1-->4)-GlcA-beta-(1-->3)-GlcNAc-beta-(1-->4)-GlcA-beta-(1-->3)-GlcNAc-OH were uniquely resolved and the two central rings were found to be a good model for the polymer environment. These assignments now allow resolved, unambiguous structural restraints to be acquired on this oligosaccharide and extrapolated to models for the solution conformation of the polymer.
Collapse
Affiliation(s)
- Charles D Blundell
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, Princess Street, Manchester M1 7DN, UK
| | | | | |
Collapse
|