1
|
Xiang C, Xiang J, Yang X, Li C, Zhou L, Jiang D, Peng Y, Xu Z, Deng G, Zhu B, Zhang P, Cai L, Gong P. Ratiometric imaging of butyrylcholinesterase activity in mice with nonalcoholic fatty liver using an AIE-based fluorescent probe. J Mater Chem B 2022; 10:4254-4260. [PMID: 35583194 DOI: 10.1039/d2tb00422d] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Butyrylcholinesterase (BChE) is an essential human biomarker which is related to liver and neurodegenerative diseases. It is of great significance to develop a fluorescent probe that can image BChE in vitro and in vivo. Unfortunately, most fluorescent probes that are based on a single change in fluorescence intensity are susceptible to environmental interference. Therefore, we reported an easily available ratiometric fluorescent probe, TB-BChE, with aggregation-induced emission (AIE) characteristics for ratiometric imaging of BChE. TB-BChE demonstrated excellent sensitivity (LOD = 39.24 ng mL-1) and specificity for BChE. Moreover, we have successfully studied the ratiometric imaging of TB-BChE to BChE in a nonalcoholic fatty liver disease model. These results indicated that TB-BChE is expected to become a powerful analysis tool for butyrylcholinesterase research in basic medicine and clinical applications.
Collapse
Affiliation(s)
- Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Lihua Zhou
- School of Applied Biology, Shenzhen Institute of Technology, No. 1 Jiangjunmao, Shenzhen 518116, P. R. China
| | - Daoyong Jiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yonglin Peng
- Pinete (Zhongshan) Biotechnology Co., Ltd. Digital trade building, No. 6, Xiangxing Road, Torch Development Zone, Zhongshan, 528400, China
| | - Zhen Xu
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Guanjun Deng
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Baode Zhu
- School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
2
|
Zhang Q, Fu C, Guo X, Gao J, Zhang P, Ding C. Fluorescent Determination of Butyrylcholinesterase Activity and Its Application in Biological Imaging and Pesticide Residue Detection. ACS Sens 2021; 6:1138-1146. [PMID: 33503372 DOI: 10.1021/acssensors.0c02398] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Butyrylcholinesterase (BChE) is an essential human cholinesterase relevant to liver conditions and neurodegenerative diseases, which makes it a pivotal biomarker of health. It therefore remains challenging and highly desired to elaborate efficient chemical tools for BChE with simple operations and satisfactory working performance. In this work, a background-free detection strategy was built by virtue of the judicious coupling of a specific BChE-enzymatic reaction and in situ cyclization. High sensitivity with a low limit of detection (LOD) of 0.075 μg/mL could be readily achieved from the blank background and the as-produced emissive indicators, and the specific reaction site contributed to the high selectivity over other bio-species even acetylcholinesterase (AChE). In addition to the multifaceted spectral experiments to verify the sensing mechanism, this work assumed comprehensive studies on the application. The bio-investigation ranged from cells to an organism, declaring a noteworthy prospect in disease diagnosis, especially for Alzheimer's disease (AD), a common neurodegenerative disease with over-expressed BChE. Moreover, its excellent work for inhibition efficacy elucidation was also proved with the accuracy IC50 of tacrine for BChE (8.6 nM), giving rise to an expanded application for trace pesticide determination.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Caixia Fu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Xinjie Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Jian Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
4
|
Microcalorimetric study of the inhibition of butyrylcholinesterase by paraoxon. Anal Biochem 2009; 389:97-101. [PMID: 19341699 DOI: 10.1016/j.ab.2009.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 03/25/2009] [Accepted: 03/26/2009] [Indexed: 11/23/2022]
Abstract
The inhibition of horse serum butyrylcholinesterase (EC 3.1.1.8) by the organophosphorus compound paraoxon (diethyl 4-nitrophenyl phosphate) was studied by flow microcalorimetry at 37 degrees C in Tris buffer (pH 7.5) using a modification of the kinetic model described by Stojan and coworkers [J. Stojan, V. Marcel, S. Estrada-Mondaca, A. Klaebe, P. Masson, D. Fournier, A putative kinetic model for substrate metabolisation by Drosophila acetylcholinesterase, FEBS Lett. 440 (1998) 85-88]. The reversible steps of the inhibition were studied in the mixing cell of the calorimeter, whereas the irreversible step was studied in the flow-through cell. A new pseudo-first-order approximation was developed to allow the kinetic analysis of inhibition progress curves in the presence of substrate when a significant amount of substrate is transformed. This approximation also allowed one to compute an analytical expression of the calorimetric curves using a gamma distribution to describe the impulse response of the calorimeter. Fitting models to data by nonlinear regression, with simulated annealing as a stochastic optimization method, allowed the determination of all kinetic parameters. It was found that paraoxon binds to both the enzyme and acyl-enzyme, but with weak affinities (K(i) = 0.123 mM and K'(i) = 5.5 mM). A slight activation was observed at the lowest paraoxon concentrations and was attributed to the binding of the substrate to the enzyme-inhibitor complex. The bimolecular inhibition rate constant k(i) = 2.8 x 10(4) M(-1) s(-1) was in agreement with previous studies. It is hoped that the methods developed in this work will contribute to extending the application range of microcalorimetry in the field of irreversible inhibitors.
Collapse
|
6
|
Monincová M, Prokop Z, Vévodová J, Nagata Y, Damborsky J. Weak activity of haloalkane dehalogenase LinB with 1,2,3-trichloropropane revealed by X-Ray crystallography and microcalorimetry. Appl Environ Microbiol 2007; 73:2005-8. [PMID: 17259360 PMCID: PMC1828796 DOI: 10.1128/aem.02416-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
1,2,3-Trichloropropane (TCP) is a highly toxic and recalcitrant compound. Haloalkane dehalogenases are bacterial enzymes that catalyze the cleavage of a carbon-halogen bond in a wide range of organic halogenated compounds. Haloalkane dehalogenase LinB from Sphingobium japonicum UT26 has, for a long time, been considered inactive with TCP, since the reaction cannot be easily detected by conventional analytical methods. Here we demonstrate detection of the weak activity (k(cat) = 0.005 s(-1)) of LinB with TCP using X-ray crystallography and microcalorimetry. This observation makes LinB a useful starting material for the development of a new biocatalyst toward TCP by protein engineering. Microcalorimetry is proposed to be a universal method for the detection of weak enzymatic activities. Detection of these activities is becoming increasingly important for engineering novel biocatalysts using the scaffolds of proteins with promiscuous activities.
Collapse
Affiliation(s)
- Marta Monincová
- Loschmidt Laboratories, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic
| | | | | | | | | |
Collapse
|