1
|
|
2
|
Sabale PM, Srivatsan SG. Responsive Fluorescent PNA Analogue as a Tool for Detecting G-quadruplex Motifs of Oncogenes and Activity of Toxic Ribosome-Inactivating Proteins. Chembiochem 2016; 17:1665-73. [PMID: 27271025 DOI: 10.1002/cbic.201600192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 12/13/2022]
Abstract
Fluorescent oligomers that are resistant to enzymatic degradation and report their binding to target oligonucleotides (ONs) by changes in fluorescence properties are highly useful in developing nucleic-acid-based diagnostic tools and therapeutic strategies. Here, we describe the synthesis and photophysical characterization of fluorescent peptide nucleic acid (PNA) building blocks made of microenvironment-sensitive 5-(benzofuran-2-yl)- and 5-(benzothiophen-2-yl)-uracil cores. The emissive monomers, when incorporated into PNA oligomers and hybridized to complementary ONs, are minimally perturbing and are highly sensitive to their neighboring base environment. In particular, benzothiophene-modified PNA reports the hybridization process with significant enhancement in fluorescence intensity, even when placed in the vicinity of guanine residues, which often quench fluorescence. This feature was used in the turn-on detection of G-quadruplex-forming promoter DNA sequences of human proto-oncogenes (c-myc and c-kit). Furthermore, the ability of benzothiophene-modified PNA oligomer to report the presence of an abasic site in RNA enabled us to develop a simple fluorescence hybridization assay to detect and estimate the depurination activity of ribosome-inactivating protein toxins. Our results demonstrate that this approach with responsive PNA probes will provide new opportunities to develop robust tools to study nucleic acids.
Collapse
Affiliation(s)
- Pramod M Sabale
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
3
|
Exonuclease III-assisted graphene oxide amplified fluorescence anisotropy strategy for ricin detection. Biosens Bioelectron 2016; 85:822-827. [PMID: 27295569 DOI: 10.1016/j.bios.2016.05.091] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 11/23/2022]
Abstract
Graphene oxide (GO) is an excellent fluorescence anisotropy (FA) amplifier. However, in the conventional GO amplified FA strategy, one target can only induce the FA change of one fluorophore on probe, which limits the detection sensitivity. Herein, we developed an exonuclease III (Exo III) aided GO amplified FA strategy by using aptamer as an recognition element and ricin B-chain as a proof-of-concept target. The aptamer was hybridized with a blocker sequence and linked onto the surface of magnetic beads (MBs). Upon the addition of ricin B-chain, blocker was released from the surface of MBs and hybridized with the dye-modified probe DNA on the surface of GO through the toehold-mediated strand exchange reaction. The formed blocker-probe DNA duplex triggered the Exo III-assisted cyclic signal amplification by repeating the hybridization and digestion of probe DNA, liberating the fluorophore with several nucleotides (low FA value). Thus, ricin B-chain could be sensitively detected by the significantly decreased FA. The linear range was from 1.0μg/mL to 13.3μg/mL and the limit of detection (LOD) was 400ng/mL. This method improved the sensitivity of FA assay and it could be generalized to any kind of target detection based on the use of an appropriate aptamer.
Collapse
|
4
|
An International Proficiency Test to Detect, Identify and Quantify Ricin in Complex Matrices. Toxins (Basel) 2015; 7:4987-5010. [PMID: 26703726 PMCID: PMC4690109 DOI: 10.3390/toxins7124859] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/08/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022] Open
Abstract
While natural intoxications with seeds of Ricinus communis (R. communis) have long been known, the toxic protein ricin contained in the seeds is of major concern since it attracts attention of those intending criminal, terroristic and military misuse. In order to harmonize detection capabilities in expert laboratories, an international proficiency test was organized that aimed at identifying good analytical practices (qualitative measurements) and determining a consensus concentration on a highly pure ricin reference material (quantitative measurements). Sample materials included highly pure ricin as well as the related R. communis agglutinin (RCA120) spiked into buffer, milk and meat extract; additionally, an organic fertilizer naturally contaminated with R. communis shred was investigated in the proficiency test. The qualitative results showed that either a suitable combination of immunological, mass spectrometry (MS)-based and functional approaches or sophisticated MS-based approaches alone successfully allowed the detection and identification of ricin in all samples. In terms of quantification, it was possible to determine a consensus concentration of the highly pure ricin reference material. The results provide a basis for further steps in quality assurance and improve biopreparedness in expert laboratories worldwide.
Collapse
|
5
|
Abrin and Ricin: Understanding Their Toxicity, Diagnosis, and Treatment. BIOLOGICAL TOXINS AND BIOTERRORISM 2015. [DOI: 10.1007/978-94-007-5869-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
Hodge DR, Prentice KW, Ramage JG, Prezioso S, Gauthier C, Swanson T, Hastings R, Basavanna U, Datta S, Sharma SK, Garber EAE, Staab A, Pettit D, Drumgoole R, Swaney E, Estacio PL, Elder IA, Kovacs G, Morse BS, Kellogg RB, Stanker L, Morse SA, Pillai SP. Comprehensive Laboratory Evaluation of a Highly Specific Lateral Flow Assay for the Presumptive Identification of Ricin in Suspicious White Powders and Environmental Samples. Biosecur Bioterror 2013; 11:237-50. [DOI: 10.1089/bsp.2013.0053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Shia WW, Bailey RC. Single domain antibodies for the detection of ricin using silicon photonic microring resonator arrays. Anal Chem 2013; 85:805-10. [PMID: 23268548 PMCID: PMC3546499 DOI: 10.1021/ac3030416] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ricin is a lethal protein toxin derived from the castor bean plant. Given its notorious history as a biowarfare agent and homicidal weapon, ricin has been classified as a category B bioterrorism agent. Current ricin detection methods based on immunoassays lack the required sensitivity and specificity for many homeland security surveillance applications. Importantly, many conventional antibody-based methodologies are unable to distinguish ricin from RCA 120, a nontoxic protein also found in the castor bean plant. Single domain antibodies (sdAbs), which are recombinantly derived from immunized llamas, are known to have high affinities for ricin A or B chains and low cross-reactivity with RCA 120. Herein, we demonstrate the use of silicon photonic microring resonators for antibody affinity profiling and one-step ricin detection at concentrations down to 300 pM using a 15 min, label-free assay format. These sdAbs were also simultaneously compared with a commercial anti-RCA IgG antibody in a multicapture agent, single target immunoassay using arrays of microrings, which allowed direct comparison of sensitivity and specificity. A selected sdAb was also found to exhibit outstanding specificity against another biotoxin, saporin, which has mechanism of action similar to ricin. Given the rapidity, scalability, and multiplexing capability of this silicon-based technology, this work represents a step toward using microring resonator arrays for the sensitive and specific detection of biowarfare agents.
Collapse
Affiliation(s)
- Winnie W. Shia
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave, Illinois, 61801
| | - Ryan C. Bailey
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave, Illinois, 61801
| |
Collapse
|
8
|
Tanpure AA, Srivatsan SG. Synthesis and photophysical characterisation of a fluorescent nucleoside analogue that signals the presence of an abasic site in RNA. Chembiochem 2012; 13:2392-9. [PMID: 23070860 DOI: 10.1002/cbic.201200408] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Indexed: 11/07/2022]
Abstract
The synthesis and site-specific incorporation of an environment-sensitive fluorescent nucleoside analogue (2), based on a 5-(benzofuran-2-yl)pyrimidine core, into DNA oligonucleotides (ONs), and its photophysical properties within these ONs are described. Interestingly and unlike 2-aminopurine (a widely used nucleoside analogue probe), when incorporated into an ON and hybridised with a complementary ON, the emissive nucleoside 2 displays significantly higher emission intensity than the free nucleoside. Furthermore, photophysical characterisation shows that the fluorescence properties of the nucleoside analogue within ONs are significantly influenced by flanking bases, especially by guanosine. By utilising the responsiveness of the nucleoside to changes in base environment, a DNA ON reporter labelled with the emissive nucleoside 2 was constructed; this signalled the presence of an abasic site in a model depurinated sarcin/ricin RNA motif of a eukaryotic 28S rRNA.
Collapse
Affiliation(s)
- Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research, 900, NCL Innovation Park, Dr. Homi Bhabha Road, Pune 411008, India
| | | |
Collapse
|
9
|
Real-time cytotoxicity assay for rapid and sensitive detection of ricin from complex matrices. PLoS One 2012; 7:e35360. [PMID: 22532852 PMCID: PMC3330811 DOI: 10.1371/journal.pone.0035360] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 03/15/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In the context of a potential bioterrorist attack sensitive and fast detection of functionally active toxins such as ricin from complex matrices is necessary to be able to start timely countermeasures. One of the functional detection methods currently available for ricin is the endpoint cytotoxicity assay, which suffers from a number of technical deficits. METHODOLOGY/FINDINGS This work describes a novel online cytotoxicity assay for the detection of active ricin and Ricinus communis agglutinin, that is based on a real-time cell electronic sensing system and impedance measurement. Characteristic growth parameters of Vero cells were monitored online and used as standardized viability control. Upon incubation with toxin the cell status and the cytotoxic effect were visualized using a characteristic cell index-time profile. For ricin, tested in concentrations of 0.06 ng/mL or above, a concentration-dependent decrease of cell index correlating with cytotoxicity was recorded between 3.5 h and 60 h. For ricin, sensitive detection was determined after 24 h, with an IC50 of 0.4 ng/mL (for agglutinin, an IC50 of 30 ng/mL was observed). Using functionally blocking antibodies, the specificity for ricin and agglutinin was shown. For detection from complex matrices, ricin was spiked into several food matrices, and an IC50 ranging from 5.6 to 200 ng/mL was observed. Additionally, the assay proved to be useful in detecting active ricin in environmental sample materials, as shown for organic fertilizer containing R. communis material. CONCLUSIONS/SIGNIFICANCE The cell-electrode impedance measurement provides a sensitive online detection method for biologically active cytotoxins such as ricin. As the cell status is monitored online, the assay can be standardized more efficiently than previous approaches based on endpoint measurement. More importantly, the real-time cytotoxicity assay provides a fast and easy tool to detect active ricin in complex sample matrices.
Collapse
|
10
|
Tanpure AA, Patheja P, Srivatsan SG. Label-free fluorescence detection of the depurination activity of ribosome inactivating protein toxins. Chem Commun (Camb) 2012; 48:501-3. [DOI: 10.1039/c1cc16667k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Understanding ricin from a defensive viewpoint. Toxins (Basel) 2011; 3:1373-92. [PMID: 22174975 PMCID: PMC3237001 DOI: 10.3390/toxins3111373] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 11/17/2022] Open
Abstract
The toxin ricin has long been understood to have potential for criminal activity and there has been concern that it might be used as a mass-scale weapon on a military basis for at least two decades. Currently, the focus has extended to encompass terrorist activities using ricin to disrupt every day activities on a smaller scale. Whichever scenario is considered, there are features in common which need to be understood; these include the knowledge of the toxicity from ricin poisoning by the likely routes, methods for the detection of ricin in relevant materials and approaches to making an early diagnosis of ricin poisoning, in order to take therapeutic steps to mitigate the toxicity. This article will review the current situation regarding each of these stages in our collective understanding of ricin and how to defend against its use by an aggressor.
Collapse
|
12
|
Worbs S, Köhler K, Pauly D, Avondet MA, Schaer M, Dorner MB, Dorner BG. Ricinus communis intoxications in human and veterinary medicine-a summary of real cases. Toxins (Basel) 2011; 3:1332-72. [PMID: 22069699 PMCID: PMC3210461 DOI: 10.3390/toxins3101332] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 12/11/2022] Open
Abstract
Accidental and intended Ricinus communis intoxications in humans and animals have been known for centuries but the causative agent remained elusive until 1888 when Stillmark attributed the toxicity to the lectin ricin. Ricinus communis is grown worldwide on an industrial scale for the production of castor oil. As by-product in castor oil production ricin is mass produced above 1 million tons per year. On the basis of its availability, toxicity, ease of preparation and the current lack of medical countermeasures, ricin has gained attention as potential biological warfare agent. The seeds also contain the less toxic, but highly homologous Ricinus communis agglutinin and the alkaloid ricinine, and especially the latter can be used to track intoxications. After oil extraction and detoxification, the defatted press cake is used as organic fertilizer and as low-value feed. In this context there have been sporadic reports from different countries describing animal intoxications after uptake of obviously insufficiently detoxified fertilizer. Observations in Germany over several years, however, have led us to speculate that the detoxification process is not always performed thoroughly and controlled, calling for international regulations which clearly state a ricin threshold in fertilizer. In this review we summarize knowledge on intended and unintended poisoning with ricin or castor seeds both in humans and animals, with a particular emphasis on intoxications due to improperly detoxified castor bean meal and forensic analysis.
Collapse
Affiliation(s)
- Sylvia Worbs
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Frankfurter Street 96, Giessen 35392, Germany;
| | - Diana Pauly
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Marc-André Avondet
- Biology and Chemistry Section, Federal Department of Defence, Civil Protection and Sports DDPS SPIEZ LABORATORY, Austrasse 1, Spiez CH-3700, Switzerland; (M.-A.A.); (M.S.)
| | - Martin Schaer
- Biology and Chemistry Section, Federal Department of Defence, Civil Protection and Sports DDPS SPIEZ LABORATORY, Austrasse 1, Spiez CH-3700, Switzerland; (M.-A.A.); (M.S.)
| | - Martin B. Dorner
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Brigitte G. Dorner
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| |
Collapse
|
13
|
Melchior WB, Tolleson WH. A functional quantitative polymerase chain reaction assay for ricin, Shiga toxin, and related ribosome-inactivating proteins. Anal Biochem 2010; 396:204-11. [DOI: 10.1016/j.ab.2009.09.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 12/23/2022]
|
14
|
Cho CY, Keener WK, Garber EAE. Application of deadenylase electrochemiluminescence assay for ricin to foods in a plate format. J Food Prot 2009; 72:903-6. [PMID: 19435248 DOI: 10.4315/0362-028x-72.4.903] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A recently developed bead-based deadenylase electrochemiluminescence assay for ricin is simple and sensitive in its ability to detect ricin, based on the catalytic activity of the toxin subunit, ricin A chain. The assay was modified to work in a 96-well plate format and evaluated by using juice samples. The plate-based assay, unlike the bead-based assay, includes wash steps that enable the removal of food particles. These steps minimize matrix effects and improve the signal-to-noise ratios and limits of detection (LOD). The LOD values for ricin in apple juice, vegetable juice, and citrate buffer by using the bead-based assay were 0.4, 1, and 0.1 microg/ml, respectively. In contrast, the LOD values for ricin by using the plate-based assay were 0.04, 0.1, and 0.04 microg/ml in apple juice, vegetable juice, and citrate buffer, respectively. The plate-based assay displayed three- to 10-fold lower LOD values than did the bead-based assay. Signal-to-noise ratios for the plate-based assay were comparable to those for the bead-based assay for ricin in citrate buffer, but 2- to 4.5-fold higher when the plate-based assay was used for analysis of juice samples.
Collapse
Affiliation(s)
- Chung Y Cho
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5100 Paint Branch Parkway, College Park, Maryland 20740, USA.
| | | | | |
Collapse
|
15
|
Garber EAE, Walker JL, O'Brien TW. Detection of abrin in food using enzyme-linked immunosorbent assay and electrochemiluminescence technologies. J Food Prot 2008; 71:1868-74. [PMID: 18810871 DOI: 10.4315/0362-028x-71.9.1868] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abrin is a toxic ribosome-inactivating protein present in beans of Abrus precatorius, also known as rosary peas. The possibility that abrin could be used to adulterate food has made the development of assays for the detection of abrin a priority. Rabbit-derived polyclonal antibodies and mouse monoclonal antibodies were prepared against a mixture of abrin isozymes. The specificity and cross-reactivity of the antibodies were evaluated against a challenge library of 40 grains, nuts, legumes, and foods. An enzyme-linked immunosorbent assay (ELISA) and an electrochemiluminescence (ECL)-based assay were assembled and optimized. Polyclonal (capture) and polyclonal (detection) ELISAs, polyclonal and monoclonal ELISAs, and polyclonal and monoclonal ECL assays had limits of detection (LODs) of 0.1 to 0.5 ng/ml for abrin in buffer. The LOD for abrin dissolved into juices, dairy products, soda, chocolate drink, and condiments and analyzed with the ECL assay ranged from 0.1 to 0.5 ng/ml in the analytical sample. In contrast, the LODs for the ELISAs ranged from 0.5 to 10 ng/ml in the analytical sample.
Collapse
Affiliation(s)
- Eric A E Garber
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, Maryland 20740, USA.
| | | | | |
Collapse
|
16
|
Keener WK, Rivera VR, Cho CY, Hale ML, Garber EAE, Poli MA. Identification of the RNA N-glycosidase activity of ricin in castor bean extracts by an electrochemiluminescence-based assay. Anal Biochem 2008; 378:87-9. [PMID: 18394420 DOI: 10.1016/j.ab.2008.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 02/15/2008] [Accepted: 03/12/2008] [Indexed: 11/19/2022]
Abstract
A simple electrochemiluminescence-based assay for RNA N-glycosidase activity has been modified to permit its use with authentic extracts of Ricinus communis (castor beans) and Abrus precatorius (jequirity seeds)--the natural sources of ricin and abrin. Modifications include the addition of an RNase inactivator to the reaction mixture, elimination of a signal-enhancing monoclonal antibody, and optimization of the incubation temperature. Concurrent testing with two substrates provides a diagnostic tool enabling castor bean toxins to be differentiated from a larger selection of N-glycosidase toxins than was previously examined.
Collapse
Affiliation(s)
- William K Keener
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Wujian Miao
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| |
Collapse
|
18
|
Detection of an abasic site in RNA with stem-loop DNA beacons: Application to an activity assay for Ricin Toxin A-Chain. ACTA ACUST UNITED AC 2008; 70:945-53. [DOI: 10.1016/j.jprot.2007.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 11/19/2007] [Accepted: 12/31/2007] [Indexed: 11/23/2022]
|
19
|
Brzezinski JL, Craft DL. Evaluation of an in vitro bioassay for the detection of purified ricin and castor bean in beverages and liquid food matrices. J Food Prot 2007; 70:2377-82. [PMID: 17969621 DOI: 10.4315/0362-028x-70.10.2377] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The potential use of ricin as a biological weapon in food highlights the necessity for the development of food-specific detection methods. Current methods for the detection of ricin consist of various immunoassays, which detect only one subunit of the ricin toxin and therefore may not be indicative of a biologically active molecule. An in vivo assay, such as a mouse bioassay, can indicate the biological activity of the toxin; however, this method is not feasible for laboratories that do not have animal testing facilities. The purpose of this study was to develop an in vitro assay for the detection of biologically active ricin in beverages and liquid foods. Acidic and high-protein beverages were spiked with either purified ricin or ground castor beans and added to cultured human Jurkat cells. After an overnight incubation, the supernatant was tested for lactate dehydrogenase (LDH) activity with a colorimetric assay. LDH was released from the cytosol upon cell damage and was positively correlated with cell death. Ricin was detectable in all the matrices tested, with a sensitivity of 10 to 100 pg/ml. Biologically active ricin was detectable in all the matrices incubated with ground castor bean material. This method provides a confirmatory way to detect biologically active ricin that can be utilized by laboratories lacking animal facilities.
Collapse
Affiliation(s)
- Jennifer L Brzezinski
- U.S. Food and Drug Administration, Forensic Chemistry Center, 6751 Steger Drive, Cincinnati, Ohio 45237, USA.
| | | |
Collapse
|
20
|
Guglielmo-Viret V, Thullier P. Comparison of an electrochemiluminescence assay in plate format over a colorimetric ELISA, for the detection of ricin B chain (RCA-B). J Immunol Methods 2007; 328:70-8. [PMID: 17854822 DOI: 10.1016/j.jim.2007.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 06/27/2007] [Accepted: 08/05/2007] [Indexed: 10/22/2022]
Abstract
An electrochemiluminescence (ECL) assay for the detection of the B chain of ricin (RCA-B) in a 96-well plate format was developed in parallel with a colorimetric ELISA utilizing the same pair of antibodies. Sensitivity results were interpreted with the ANOVA and Tukey statistical tests, allowing a direct comparison between the two technologies, that can probably be extended to other protein antigens such as toxins. Reproducibility, repeatability and rapidity of the two techniques were also compared. The ELISA assay utilized an alkaline phosphatase conjugate for signal generation. After optimization, its limit of detection was 400 pg of RCA-B per ml buffer, with an intra-day standard deviation (SD) of 2.2% of the mean and an inter-day SD of 5.1%. The ECL assay utilized ruthenylated antibodies for detection. The ECL measurement was carried out using a Sector PR 400 plate reader. After optimization, its limit of detection was 50 pg of RCA-B per ml buffer, with an intra-day SD of 4.1% of the mean and an inter-day SD of 4.3%. Starting from a pre-coated plate, the ELISA assay was completed in 7 h and the ECL assay took 2.5 h. While reproducibility and repeatability of the two assays were equivalent, this ECL assay in plate format had an 8-fold better sensitivity for RCA-B detection than the colorimetric ELISA in buffer and in various matrices. The ECL assay was also three times faster, and retained the robustness and convenience of the 96-well plate format.
Collapse
Affiliation(s)
- V Guglielmo-Viret
- Groupe de Biotechnologie des Anticorps, Département de Biologie des Agents Transmissibles, Centre de Recherche du Service de Santé des Armées, BP 87, 38702, La Tronche, France
| | | |
Collapse
|