1
|
Andrault PM, Panwar P, Mackenzie NCW, Brömme D. Elastolytic activity of cysteine cathepsins K, S, and V promotes vascular calcification. Sci Rep 2019; 9:9682. [PMID: 31273243 PMCID: PMC6609650 DOI: 10.1038/s41598-019-45918-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
Elastin plays an important role in maintaining blood vessel integrity. Proteolytic degradation of elastin in the vascular system promotes the development of atherosclerosis, including blood vessel calcification. Cysteine cathepsins have been implicated in this process, however, their role in disease progression and associated complications remains unclear. Here, we showed that the degradation of vascular elastin by cathepsins (Cat) K, S, and V directly stimulates the mineralization of elastin and that mineralized insoluble elastin fibers were ~25–30% more resistant to CatK, S, and V degradation when compared to native elastin. Energy dispersive X-ray spectroscopy investigations showed that insoluble elastin predigested by CatK, S, or V displayed an elemental percentage in calcium and phosphate up to 8-fold higher when compared to non-digested elastin. Cathepsin-generated elastin peptides increased the calcification of MOVAS-1 cells acting through the ERK1/2 pathway by 34–36%. We made similar observations when cathepsin-generated elastin peptides were added to ex vivo mouse aorta rings. Altogether, our data suggest that CatK-, S-, and V-mediated elastolysis directly accelerates the mineralization of the vascular matrix by the generation of nucleation points in the elastin matrix and indirectly by elastin-derived peptides stimulating the calcification by vascular smooth muscle cells. Both processes inversely protect against further extracellular matrix degradation.
Collapse
Affiliation(s)
- Pierre-Marie Andrault
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Neil C W Mackenzie
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada. .,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.
| |
Collapse
|
2
|
Miekus N, Luise C, Sippl W, Baczek T, Schmelzer CEH, Heinz A. MMP-14 degrades tropoelastin and elastin. Biochimie 2019; 165:32-39. [PMID: 31278967 DOI: 10.1016/j.biochi.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases are a class of enzymes, which degrade extracellular matrix components such as collagens, elastin, laminin or fibronectin. So far, four matrix metalloproteinases have been shown to degrade elastin and its precursor tropoelastin, namely matrix metalloproteinase-2, -7, -9 and -12. This study focuses on investigating the elastinolytic capability of membrane-type 1 matrix metalloproteinase, also known as matrix metalloproteinase-14. We digested recombinant human tropoelastin and human skin elastin with matrix metalloproteinase-14 and analyzed the peptide mixtures using complementary mass spectrometric techniques and bioinformatics tools. The results and additional molecular docking studies show that matrix metalloproteinase-14 cleaves tropoelastin as well as elastin. While tropoelastin was well degraded, fewer cleavages occurred in the highly cross-linked mature elastin. The study also provides insights into the cleavage preferences of the enzyme. Similar to cleavage preferences of matrix metalloproteinases-2, -7, -9 and -12, matrix metalloproteinase-14 prefers small and medium-sized hydrophobic residues including Gly, Ala, Leu and Val at cleavage site P1'. Pro, Gly and Ala were preferably found at P1-P4 and P2'-P4' in both tropoelastin and elastin. Cleavage of mature skin elastin by matrix metalloproteinase-14 released a variety of bioactive elastin peptides, which indicates that the enzyme may play a role in the development and progression of cardiovascular diseases that go along with elastin breakdown.
Collapse
Affiliation(s)
- Natalia Miekus
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland; Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Chiara Luise
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tomasz Baczek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Christian E H Schmelzer
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Andrea Heinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Gudmann NS, Manon-Jensen T, Sand JMB, Diefenbach C, Sun S, Danielsen A, Karsdal MA, Leeming DJ. Lung tissue destruction by proteinase 3 and cathepsin G mediated elastin degradation is elevated in chronic obstructive pulmonary disease. Biochem Biophys Res Commun 2018; 503:1284-1290. [PMID: 30017196 DOI: 10.1016/j.bbrc.2018.07.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/07/2018] [Indexed: 10/28/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by high levels of protease activity leading to degradation of elastin followed by loss of elasticity of the lung and the development of emphysema. Elastin is an essential structural component of the lung parenchyma to support the expansion and recoil of the alveoli during breathing. The lung extracellular matrix is vulnerable to pathological structural changes upon upregulation of serine proteases, including cathepsin G (CG) and proteinase 3 (PR3). In this study, we explored the diagnostic features of elastin neo-epitopes generated by CG and PR3. Two novel competitive enzyme-linked immunosorbent assays (ELISA) measuring CG and PR3 generated elastin fragments (EL-CG and ELP-3 respectively) were developed for assessment in serum. Both assays were technically robust and biologically validated in serum from patients with COPD. Serological levels of both elastin fragments were significantly elevated in patients with COPD compared to healthy controls. These data suggest that EL-CG and ELP-3 may serve as plausible biologic markers of destructive changes in COPD.
Collapse
Affiliation(s)
| | | | | | | | - Shu Sun
- Nordic Bioscience, Herlev, Denmark
| | | | | | | |
Collapse
|
4
|
Sato N, Taniguchi T, Goda Y, Kosaka H, Higashino K, Sakai T, Katoh S, Yasui N, Sairyo K, Taniguchi H. Proteomic Analysis of Human Tendon and Ligament: Solubilization and Analysis of Insoluble Extracellular Matrix in Connective Tissues. J Proteome Res 2016; 15:4709-4721. [DOI: 10.1021/acs.jproteome.6b00806] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nori Sato
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takako Taniguchi
- Division
of Disease Proteomics, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuichiro Goda
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hirofumi Kosaka
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kosaku Higashino
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Toshinori Sakai
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Shinsuke Katoh
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Natsuo Yasui
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Koichi Sairyo
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hisaaki Taniguchi
- Division
of Disease Proteomics, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
5
|
Kristensen JH, Karsdal MA, Genovese F, Johnson S, Svensson B, Jacobsen S, Hägglund P, Leeming DJ. The Role of Extracellular Matrix Quality in Pulmonary Fibrosis. Respiration 2014; 88:487-99. [DOI: 10.1159/000368163] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
|
6
|
Skjøt-Arkil H, Clausen RE, Rasmussen LM, Wang W, Wang Y, Zheng Q, Mickley H, Saaby L, Diederichsen ACP, Lambrechtsen J, Martinez FJ, Hogaboam CM, Han M, Larsen MR, Nawrocki A, Vainer B, Krustrup D, Bjørling-Poulsen M, Karsdal MA, Leeming DJ. Acute Myocardial Infarction and Pulmonary Diseases Result in Two Different Degradation Profiles of Elastin as Quantified by Two Novel ELISAs. PLoS One 2013; 8:e60936. [PMID: 23805173 PMCID: PMC3689773 DOI: 10.1371/journal.pone.0060936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/04/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Elastin is a signature protein of the arteries and lungs, thus it was hypothesized that elastin is subject to enzymatic degradation during cardiovascular and pulmonary diseases. The aim was to investigate if different fragments of the same protein entail different information associated to two different diseases and if these fragments have the potential of being diagnostic biomarkers. METHODS Monoclonal antibodies were raised against an identified fragment (the ELM-2 neoepitope) generated at the amino acid position '552 in elastin by matrix metalloproteinase (MMP) -9/-12. A newly identified ELM neoepitope was generated by the same proteases but at amino acid position '441. The distribution of ELM-2 and ELM, in human arterial plaques and fibrotic lung tissues were investigated by immunohistochemistry. A competitive ELISA for ELM-2 was developed. The clinical relevance of the ELM and ELM-2 ELISAs was evaluated in patients with acute myocardial infarction (AMI), no AMI, high coronary calcium, or low coronary calcium. The serological release of ELM-2 in patients with chronic obstructive pulmonary disease (COPD) or idiopathic pulmonary fibrosis (IPF) was compared to controls. RESULTS ELM and ELM-2 neoepitopes were both localized in diseased carotid arteries and fibrotic lungs. In the cardiovascular cohort, ELM-2 levels were 66% higher in serum from AMI patients compared to patients with no AMI (p<0.01). Levels of ELM were not significantly increased in these patients and no correlation was observed between ELM-2 and ELM. ELM-2 was not elevated in the COPD and IPF patients and was not correlated to ELM. ELM was shown to be correlated with smoking habits (p<0.01). CONCLUSIONS The ELM-2 neoepitope was related to AMI whereas the ELM neoepitope was related to pulmonary diseases. These results indicate that elastin neoepitopes generated by the same proteases but at different amino acid sites provide different tissue-related information depending on the disease in question.
Collapse
Affiliation(s)
- Helene Skjøt-Arkil
- Nordic Bioscience A/S, Herlev, Denmark
- School of Endocrinology, University of Southern Denmark, Odense, Denmark
| | | | - Lars M. Rasmussen
- Institute of Clinical Research, Odense University Hospital, Odense, Denmark
| | | | - Yaguo Wang
- Nordic Bioscience Beijing, Beijing, China
| | | | - Hans Mickley
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Lotte Saaby
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | | | | | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine and Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cory M. Hogaboam
- Division of Pulmonary and Critical Care Medicine and Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - MeiLan Han
- Division of Pulmonary and Critical Care Medicine and Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ben Vainer
- Department of Pathology, Rigshopitalet, University of Copenhagen, Copenhagen, Denmark
| | - Dorrit Krustrup
- Department of Pathology, Rigshopitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
7
|
Schmelzer CEH, Jung MC, Wohlrab J, Neubert RHH, Heinz A. Does human leukocyte elastase degrade intact skin elastin? FEBS J 2012; 279:4191-200. [PMID: 23006486 DOI: 10.1111/febs.12012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/16/2012] [Accepted: 09/21/2012] [Indexed: 11/30/2022]
Abstract
This study aimed to investigate the susceptibility of intact fibrillar human elastin to human leukocyte elastase and cathepsin G. Elastin is a vital protein of the extracellular matrix of vertebrates, and provides exceptional properties including elasticity and tensile strength to many tissues and organs, including the aorta, lung, cartilage, elastic ligaments and skin, and is thus critical for their long-term function. Mature elastin is an insoluble and extremely durable protein that undergoes very little turnover, but sustained exposure to proteases may lead to irreversible and severe damage, and thus to functional loss of the elastic fiber network. Hence, it is a key issue to understand which enzymes actually initiate elastolysis under certain pathological conditions or during intrinsic aging. In this paper, we provide a complete workflow for isolation of pure and intact elastin from very small tissue samples to test enzymes for their elastolytic potential. This workflow was applied to skin samples from variously aged individuals, and it was found that strong differences exist in the degradability of the elastins investigated. In summary, human leukocyte elastase was unable to degrade intact elastin fibers but hydrolyzed elastin derived from the skin of old people. However, cathepsin G cleaved all elastin samples, even those derived from younger individuals. These results indicate that human leukocyte elastase is not a driving force for elastolysis, but may nevertheless promote further breakdown of elastic fibers after the action of other enzymes such as cathepsin G.
Collapse
Affiliation(s)
- Christian E H Schmelzer
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Germany.
| | | | | | | | | |
Collapse
|
8
|
Measurement of MMP-9 and -12 degraded elastin (ELM) provides unique information on lung tissue degradation. BMC Pulm Med 2012; 12:34. [PMID: 22818364 PMCID: PMC3515477 DOI: 10.1186/1471-2466-12-34] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/03/2012] [Indexed: 01/13/2023] Open
Abstract
Background Elastin is an essential component of selected connective tissues that provides a unique physiological elasticity. Elastin may be considered a signature protein of lungs where matrix metalloprotease (MMP) -9-and -12, may be considered the signature proteases of the macrophages, which in part are responsible for tissue damage during disease progression. Thus, we hypothesized that a MMP-9/-12 generated fragment of elastin may be a relevant biochemical maker for lung diseases. Methods Elastin fragments were identified by mass-spectrometry and one sequence, generated by MMP-9 and -12 (ELN-441), was selected for monoclonal antibody generation and used in the development of an ELISA. Soluble and insoluble elastin from lung was cleaved in vitro and the time-dependent release of fragments was assessed in the ELN-441 assay. The release of ELN-441 in human serum from patients with chronic obstructive pulmonary disease (COPD) (n = 10) and idiopathic pulmonary fibrosis (IPF) (n = 29) were compared to healthy matched controls (n = 11). Results The sequence ELN-441 was exclusively generated by MMP-9 and -12 and was time-dependently released from soluble lung elastin. ELN-441 levels were 287% higher in patients diagnosed with COPD (p < 0.001) and 124% higher in IPF patients (p < 0.0001) compared with controls. ELN-441 had better diagnostic value in COPD patients (AUC 97%, p = 0.001) than in IPF patients (AUC 90%, p = 0.0001). The odds ratios for differentiating controls from COPD or IPF were 24 [2.06–280] for COPD and 50 [2.64–934] for IPF. Conclusions MMP-9 and -12 time-dependently released the ELN-441 epitope from elastin. This fragment was elevated in serum from patients with the lung diseases IPF and COPD, however these data needs to be validated in larger clinical settings.
Collapse
|
9
|
He J, Turino GM, Lin YY. Characterization of peptide fragments from lung elastin degradation in chronic obstructive pulmonary disease. Exp Lung Res 2011; 36:548-57. [PMID: 20815658 DOI: 10.3109/01902148.2010.489143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study presents a method for detecting and characterizing peptides of elastin that result from lung matrix injury in chronic obstructive pulmonary disease (COPD). Lung elastin degradation was studied by two representative in vivo elastases, human neutrophil elastase (HNE) and macrophage metalloproteinase (MMP12). The resulting peptide mixtures were analyzed by high-performance liquid chromatography/electrospray tandem mass spectrometry (LC/MSMS) to characterize 40 elastin-derived peptides (EDPs), 24 from HNE and 16 from MMP12 digestions. The peptides constitute major EDPs that are solubilized by the enzymatic digestion. Using the selected reaction monitoring (SRM) from LC/MSMS analysis, the transition ions of the peptides were used to investigate the presence of the peptides in selected body fluids of chronic obstructive pulmonary disease (COPD) patients. Four peptides, GYPI, APGVGV, GLGAFPA, and VGVLPGVPT, were detected in plasma or sputum of some COPD patients but not in normal controls. A hexapeptide VGVAPG, which had been widely studied for its chemotactic activity for a possible pathogenic role in COPD, was not detected in lung EDPs by HNE or MMP12 digestion, but only by porcine pancreatic elastase (PPE) digestion. This study demonstrates a practical methodology to study peptides from matrix degradations in pulmonary disease and a means of investigating their pathogenesis.
Collapse
Affiliation(s)
- Jiangtao He
- Department of Medicine, St. Luke's Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, New York 10019, USA
| | | | | |
Collapse
|
10
|
Shan M, Cheng HF, Song LZ, Roberts L, Green L, Hacken-Bitar J, Huh J, Bakaeen F, Coxson HO, Storness-Bliss C, Ramchandani M, Lee SH, Corry DB, Kheradmand F. Lung myeloid dendritic cells coordinately induce TH1 and TH17 responses in human emphysema. Sci Transl Med 2010; 1:4ra10. [PMID: 20368170 DOI: 10.1126/scitranlsmed.3000154] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to tobacco smoke activates innate and adaptive immune responses that in long-term smokers have been linked to diseases of the lungs, cardiovascular system, joints, and other organs. The destruction of lung tissue that underlies smoking-induced emphysema has been associated with T helper 1 cells that recognize the matrix protein elastin. Factors that result in the development of such autoreactive T cells in smokers remain unknown but are crucial for further understanding the pathogenesis of systemic inflammatory diseases in smokers. Here, we show that lung myeloid dendritic cells were sufficient to induce T helper 1 and T helper 17 responses in CD4 T cells. T helper 1 and 17 cells are invariably present in lungs from patients with emphysema but not in lungs from normal individuals. Interleukin-17A, a canonical T helper 17 cytokine, enhanced secretion of CCL20, a chemoattractant for dendritic cells, and matrix metalloproteinase 12, a potent elastolytic proteinase, from lung macrophages. Thus, although diverse lung factors potentially contribute to T helper effector differentiation in vivo, lung myeloid dendritic cells direct the generation of pathogenic T cells and support a feedback mechanism that sustains both inflammatory cell recruitment and lung destruction. This mechanism may underlie disease in other elastin-rich organs and tissues.
Collapse
Affiliation(s)
- Ming Shan
- Department of Medicine, Section of Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Heinz A, Jung MC, Duca L, Sippl W, Taddese S, Ihling C, Rusciani A, Jahreis G, Weiss AS, Neubert RHH, Schmelzer CEH. Degradation of tropoelastin by matrix metalloproteinases--cleavage site specificities and release of matrikines. FEBS J 2010; 277:1939-56. [PMID: 20345904 DOI: 10.1111/j.1742-4658.2010.07616.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To provide a basis for the development of approaches to treat elastin-degrading diseases, the aim of this study was to investigate the degradation of the natural substrate tropoelastin by the elastinolytic matrix metalloproteinases MMP-7, MMP-9, and MMP-12 and to compare the cleavage site specificities of the enzymes using complementary MS techniques and molecular modeling. Furthermore, the ability of the three proteases to release bioactive peptides was studied. Tropoelastin was readily degraded by all three MMPs. Eighty-nine cleavage sites in tropoelastin were identified for MMP-12, whereas MMP-7 and MMP-9 were found to cleave at only 58 and 63 sites, respectively. Cleavages occurred predominantly in the N-terminal and C-terminal regions of tropoelastin. With respect to the cleavage site specificities, the study revealed that all three MMPs similarly tolerate hydrophobic and/or aliphatic amino acids, including Pro, Gly, Ile, and Val, at P(1)'. MMP-7 shows a strong preference for Leu at P(1)', which is also well accepted by MMP-9 and MMP-12. Of all three MMPs, MMP-12 best tolerates bulky charged and aromatic amino acids at P(1)'. All three MMPs showed a clear preference for Pro at P(3) that could be structurally explained by molecular modeling. Analysis of the generated peptides revealed that all three MMPs show a similar ability to release bioactive sequences, with MMP-12 producing the highest number of these peptides. Furthermore, the generated peptides YTTGKLPYGYGPGG, YGARPGVGVGGIP, and PGFGAVPGA, containing GxxPG motifs that have not yet been proven to be bioactive, were identified as new matrikines upon biological activity testing.
Collapse
Affiliation(s)
- Andrea Heinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Degradation of elastin, the main amorphous component of elastic fibers, by elastases belonging to the serine, metallo, or cysteine families leads to the generation of elastin fragments, designated as elastokines in keeping with their cytokine-like properties. Generation of elastokines from one of the longest lived protein in human might represent a strong tissue repair signal. Indeed, they (1) exhibit potent chemotactic activity for leukocytes, (2) stimulate fibroblast and smooth muscle cell proliferation, and (3) display proangiogenic activity as potent as VEGF. However, continuous exposure of cells to these matrikines, through increased elastase(s) expression with age, can contribute to the formation of a chronic inflammatory state, that is, inflamm-aging. Importantly, binding of elastokines to S-Gal, their cognate receptor, proved to stimulate matrix metalloproteinase expression in normal and cancer cells. Besides, these elastin fragments can polarize lymphocytes toward a Th-1 response or induce an osteogenic response in smooth muscle cells, and arterial wall calcification. In this chapter, emphasis will be made on the contribution of elastokines on the genesis of age-related arterial wall diseases, particularly abdominal aortic aneurysms (AAAs). An elastokine theory of AAAs progression will be proposed. Age is one main risk factor of cancer incidence and development. The myriad of biological effects exerted by elastokines on stromal and inflammatory cells led us to hypothesize that they might be main actors in elaborating a favorable cancerization field in melanoma; for instance these peptides could catalyze the vertical growth phase transition in melanoma through increased expression of gelatinase A and membrane-type 1 matrix metalloproteinase.
Collapse
Affiliation(s)
- Frank Antonicelli
- Faculty of Medicine Extracellular Matrix and Cell Signaling--Reims University, UMR 6198 CNRS 51095 Reims Cedex, France
| | | | | | | |
Collapse
|